Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MRI findings shed light on multiple sclerosis

21.08.2012
New magnetic resonance imaging (MRI) research shows that changes in brain blood flow associated with vein abnormalities are not specific for multiple sclerosis (MS) and do not contribute to its severity, despite what some researchers have speculated. Results of the research are published online in the journal Radiology.

"MRI allowed an accurate evaluation of cerebral blood flow that was crucial for our results," said Simone Marziali, M.D., from the Department of Diagnostic Imaging at the University of Rome Tor Vergata in Rome.

MS is a disease of the central nervous system in which the body's immune system attacks the nerves. There are different types of MS, and symptoms and severity vary widely. Recent reports suggest a highly significant association between MS and chronic cerebrospinal venous insufficiency (CCSVI), a condition characterized by compromised blood flow in the veins that drain blood from the brain.

This strong correlation has generated substantial attention from the scientific community and the media in recent years, raising the possibility that MS can be treated with endovascular procedures like stent placement. However, the role of brain blood flow alterations on MS patients is still unclear.

To investigate this further, Italian researchers compared brain blood flow in 39 MS patients and 26 healthy control participants. Twenty-five of the MS patients and 14 of the healthy controls were positive for CCSVI, based on Color-Doppler-Ultrasound (CDU) findings. The researchers used dynamic susceptibility contrast-enhanced (DSC) MRI to assess blood flow in the brains of the study groups. DSC MR imaging offers more accurate assessment of brain blood flow than that of CDU. MRI and CDU were used to assess two different anatomical structures.

While CCSVI-positive patients showed decreased cerebral blood flow and volume compared with their CCSVI-negative counterparts, there was no significant interaction between MS and CCSVI for any of the blood flow parameters. Furthermore, the researchers did not find any correlation between the cerebral blood flow and volume in the brain's white matter and the severity of disability in MS patients.

The results suggest that CCSVI is not a pathological condition correlated with MS, according to Dr. Marziali, but probably just an epiphenomenon—an accessory process occurring in the course of a disease that is not necessarily related to the disease. This determination is important because, to date, studies of the prevalence of CCSVI in MS patients have provided inconclusive results.

"This study clearly demonstrates the important role of MRI in defining and understanding the causes of MS," Dr. Marziali said. "I believe that, in the future, it will be necessary to use powerful and advanced diagnostic tools to obtain a better understanding of this and other diseases still under study.

"Brain Hemodynamic Changes Associated with Chronic Cerebrospinal Venous Insufficiency (CCSVI) Are Not Specific for Multiple Sclerosis (MS) and Do Not Contribute to Its Severity." Collaborating with Dr. Marziali were Francesco G. Garaci, M.D., Alessandro Meschini, M.D., Maria Fornari, M.D., Silvia Rossi, M.D., Milena Melis, M.D., Sebastiano Fabiano, M.D., Matteo Stefanini, M.D., Giovanni Simonetti, M.D., Diego Centonze, M.D., and Roberto Floris, M.D.

Radiology is edited by Herbert Y. Kressel, M.D., Harvard Medical School, Boston, Mass., and owned and published by the Radiological Society of North America, Inc.

RSNA is an association of more than 48,000 radiologists, radiation oncologists, medical physicists and related scientists committed to excellence in patient care through education and research. The Society is based in Oak Brook, Ill.

For patient-friendly information on MRI, visit RadiologyInfo.org.

Linda Brooks | EurekAlert!
Further information:
http://www.rsna.org

More articles from Medical Engineering:

nachricht Novel breast tomosynthesis technique reduces screening recall rate
21.02.2017 | Radiological Society of North America

nachricht Biocompatible 3-D tracking system has potential to improve robot-assisted surgery
17.02.2017 | Children's National Health System

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>