Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MRI accurately depicts deep endometriosis

08.07.2009
Using magnetic resonance imaging (MRI), radiologists may be able to diagnose deep endometriosis and accurately locate lesions prior to surgery, according to a new study published in the online edition of Radiology.

"Pelvic MRI at 3 Tesla is a noninvasive technique that allows a complete examination of the pelvis," said the study's lead author, Nathalie Hottat, M.D., from the Department of Radiology at Erasme Hospital and the Université Libre de Bruxelles in Brussels, Belgium. "It accurately depicts all locations of deep endometriosis."

Endometriosis is a chronic and painful disease that results when uterine tissue, called endometrium, grows outside the uterus. Endometrium can attach to other organs, such as the ovaries, fallopian tubes, bowels and bladder. Endometriosis is one of the most common health problems affecting women. According to the U.S. Department of Health and Human Services, approximately 5 million American women have endometriosis. Symptoms include chronic pelvic pain, lower back pain, painful sexual intercourse, painful menstrual cramps, fatigue and infertility.

There are two types of endometriosis: superficial and subperitoneal (deep). Deep endometriosis infiltrates areas of the cervix, vagina and/or the colon, and, less frequently, the bladder and ureter. Superficial endometriosis can be treated with laparoscopy, but deep endometriosis sometimes requires complete surgical excision of the lesions.

It is important that the diagnosis and staging of the disease distinguish between the two types in order to guide the surgeon to schedule the most appropriate procedure. Therefore, the researchers set out to determine the accuracy of 3-T pelvic MRI in diagnosing the presence of deep endometriosis and to evaluate colon wall involvement.

The researchers studied 41 women, age 20 – 46, with suspected endometriosis. MRI was performed prior to surgery. MRI accurately diagnosed 26 of 27 cases of deep endometriosis. In addition, MR images accurately depicted specific locations of deep endometrial lesions.

"The 3-T MRI results also demonstrated a high negative predictive value of 93.3 percent," Dr. Hottat said, "meaning that MRI findings accurately ruled out deep endometriosis in patients with superficial endometriosis, allowing the surgeon to perform the less invasive laparoscopic procedure."

Colon wall involvement was present in 32 percent of patients with deep endometriosis. MRI was effective at distinguishing different layers of the affected colon wall and accurately depicted the degree of colon wall invasion.

"Endometriosis: Contribution of 3.0-T Pelvic MR Imaging in Preoperative Assessment—Initial Results." Collaborating with Dr. Hottat were Caroline Larrousse, M.D., Vincent Anaf, M.D., Ph.D., Jean-Christophe Noël, M.D., Ph.D., Celso Matos, M.D., Julie Absil, Ph.D., and Thierry Metens, Ph.D.

Radiology is edited by Herbert Y. Kressel, M.D., Harvard Medical School, Boston, Mass., and owned and published by the Radiological Society of North America, Inc. (http://radiology.rsnajnls.org/)

RSNA is an association of more than 43,000 radiologists, radiation oncologists, medical physicists and related scientists committed to excellence in patient care through education and research. (RSNA.org)

For patient-friendly information on MRI, visit RadiologyInfo.org.

Linda Brooks | EurekAlert!
Further information:
http://www.rsna.org

More articles from Medical Engineering:

nachricht New imaging technique able to watch molecular dynamics of neurodegenerative diseases
14.07.2017 | The Optical Society

nachricht Quick test finds signs of sepsis in a single drop of blood
03.07.2017 | University of Illinois at Urbana-Champaign

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>