Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Mini-sensor Measures Magnetic Field of the Brain

29.05.2012
Successful test at PTB of optical magnetometer with potential applications in brain imaging for neurological diagnostics and in basic research.

In future a new magnetic sensor the size of a sugar cube might simplify the measurement of brain activity. In the magnetically shielded room of Physikalisch-Technische Bundesanstalt (PTB) the sensor has passed an important technical test: Spontaneous as well as stimulated magnetic fields of the brain were detected.


Magnetic sensor the size of a sugar cube with electrical and optical lines.
Foto: PTB/NIST

This demonstrates the potential of the sensor for medical applications, such as, the investigation of brain currents during cognitive processes with the aim of improving neurological diagnostics. The main advantage of the new sensor developed by NIST in the USA over the conventionally used cryoelectronics is its room temperature operation capability making complicated cooling obsolete. The results have recently been published in the journal "Biomedical Optics Express".

The magnetic field sensor is called Chip-scale Atomic Magnetometer (CSAM) as it uses miniaturized optics for measuring absorption changes in a Rubidium gas cell caused by magnetic fields. The CSAM sensor was developed by NIST (National Institute of Standards and Technology), which is the national metrology institute of the USA. In this cooperation between PTB and NIST each partner contributes his own particular capabilities. PTB’s staff has long standing experience in biomagnetic measurements in a unique magnetically shielded room. NIST contributes the sensors, which are the result of a decade of dedicated research and development.

Up to now the measurement of very weak magnetic fields was the domain of cryoelectronic sensors, the so called superconducting quantum interference device (SQUID). They can be considered as the „gold standard“ for this application, but they have the disadvantage to operate only at very low temperatures close to absolute zero. This makes them expensive and less versatile compared to CSAMs. Even though at present CSAMs are still less sensitive compared to SQUIDs, measurements with a quality comparable to SQUIDs, but at lower costs, might eventually become reality. Due to the cooling requirements, SQUIDs have to be kept apart from the human body by a few centimeters. In contrast to that, CSAMs can be attached closely to the human body. This increases the signal amplitude as the magnetic field from currents inside the human bodydecays rapidly with increasing distance.

An important application is the measurement of the magnetic field distribution around the head, which is called magnetoencephalography (MEG). It enables the characterization of neuronal currents. Such investigations have gained importance during the last few years for neurologists and neuroscientists. Objective indicators of psychiatric disorders as well as age dependent brain diseases, are urgently needed for the support of today’s clinical diagnostics.

Already in 2010 scientists from NIST and PTB had successfully tested the performance of an earlier version of the present CSAM by measurements of the magnetic field of the human heart. For the present study the sensor was positioned about 4 mm away from the head of healthy subjects. At the back of the head, the magnetic fields of alpha waves were detected, a basic brain rhythm which occurs spontaneously during relaxation. In another measurement the brain fields due to the processing of tactile stimuli were identified. These fields are extremely weak and the CSAM result was validated by a simultaneous MEG measurement relying on the established SQUID technology. if/ptb

Press Release of NIST
http://www.nist.gov/pml/div688/brain-041912.cfm
Original Publication
• T. Sander-Thömmes, J. Preusser, R. Mhaskar, J. Kitching, L. Trahms, S. Knappe: Magnetoencephalography with a Chip-Scale Atomic Magnetometer. Biomedical Optics Express Vol. 3 Issue 5, pp.981-990 (2012)

http://www.opticsinfobase.org/boe/issue.cfm?volume=3&issue=5

• PTB-NIST-Experiment of 2010:
S. Knappe, T.H. Sander, O. Kosch, F. Wiekhorst, J. Kitching and L. Trahms. Cross-validation of microfabricated atomic magnetometers with SQUIDs for biomagnetic applications. Applied Physics Letters. 97, 133703 (2010); doi:10.1063/1.3491548. Online publication: Sept. 28, 2010.
Contact
Dr. Tilmann Sander-Thömmes, PTB Working Group 8.21 Biomagnetism,
Phone ++49 (30) 3481-7436, E-mail: tilmann.sander-thoemmes@ptb.de

Imke Frischmuth | PTB
Further information:
http://www.ptb.de/index_en.html

More articles from Medical Engineering:

nachricht Surgery involving ultrasound energy found to treat high blood pressure
24.05.2018 | Queen Mary University of London

nachricht XXL computed tomography: a new dimension in X-ray analysis
17.05.2018 | Fraunhofer-Gesellschaft

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>