Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Mini-sensor Measures Magnetic Field of the Brain

29.05.2012
Successful test at PTB of optical magnetometer with potential applications in brain imaging for neurological diagnostics and in basic research.

In future a new magnetic sensor the size of a sugar cube might simplify the measurement of brain activity. In the magnetically shielded room of Physikalisch-Technische Bundesanstalt (PTB) the sensor has passed an important technical test: Spontaneous as well as stimulated magnetic fields of the brain were detected.


Magnetic sensor the size of a sugar cube with electrical and optical lines.
Foto: PTB/NIST

This demonstrates the potential of the sensor for medical applications, such as, the investigation of brain currents during cognitive processes with the aim of improving neurological diagnostics. The main advantage of the new sensor developed by NIST in the USA over the conventionally used cryoelectronics is its room temperature operation capability making complicated cooling obsolete. The results have recently been published in the journal "Biomedical Optics Express".

The magnetic field sensor is called Chip-scale Atomic Magnetometer (CSAM) as it uses miniaturized optics for measuring absorption changes in a Rubidium gas cell caused by magnetic fields. The CSAM sensor was developed by NIST (National Institute of Standards and Technology), which is the national metrology institute of the USA. In this cooperation between PTB and NIST each partner contributes his own particular capabilities. PTB’s staff has long standing experience in biomagnetic measurements in a unique magnetically shielded room. NIST contributes the sensors, which are the result of a decade of dedicated research and development.

Up to now the measurement of very weak magnetic fields was the domain of cryoelectronic sensors, the so called superconducting quantum interference device (SQUID). They can be considered as the „gold standard“ for this application, but they have the disadvantage to operate only at very low temperatures close to absolute zero. This makes them expensive and less versatile compared to CSAMs. Even though at present CSAMs are still less sensitive compared to SQUIDs, measurements with a quality comparable to SQUIDs, but at lower costs, might eventually become reality. Due to the cooling requirements, SQUIDs have to be kept apart from the human body by a few centimeters. In contrast to that, CSAMs can be attached closely to the human body. This increases the signal amplitude as the magnetic field from currents inside the human bodydecays rapidly with increasing distance.

An important application is the measurement of the magnetic field distribution around the head, which is called magnetoencephalography (MEG). It enables the characterization of neuronal currents. Such investigations have gained importance during the last few years for neurologists and neuroscientists. Objective indicators of psychiatric disorders as well as age dependent brain diseases, are urgently needed for the support of today’s clinical diagnostics.

Already in 2010 scientists from NIST and PTB had successfully tested the performance of an earlier version of the present CSAM by measurements of the magnetic field of the human heart. For the present study the sensor was positioned about 4 mm away from the head of healthy subjects. At the back of the head, the magnetic fields of alpha waves were detected, a basic brain rhythm which occurs spontaneously during relaxation. In another measurement the brain fields due to the processing of tactile stimuli were identified. These fields are extremely weak and the CSAM result was validated by a simultaneous MEG measurement relying on the established SQUID technology. if/ptb

Press Release of NIST
http://www.nist.gov/pml/div688/brain-041912.cfm
Original Publication
• T. Sander-Thömmes, J. Preusser, R. Mhaskar, J. Kitching, L. Trahms, S. Knappe: Magnetoencephalography with a Chip-Scale Atomic Magnetometer. Biomedical Optics Express Vol. 3 Issue 5, pp.981-990 (2012)

http://www.opticsinfobase.org/boe/issue.cfm?volume=3&issue=5

• PTB-NIST-Experiment of 2010:
S. Knappe, T.H. Sander, O. Kosch, F. Wiekhorst, J. Kitching and L. Trahms. Cross-validation of microfabricated atomic magnetometers with SQUIDs for biomagnetic applications. Applied Physics Letters. 97, 133703 (2010); doi:10.1063/1.3491548. Online publication: Sept. 28, 2010.
Contact
Dr. Tilmann Sander-Thömmes, PTB Working Group 8.21 Biomagnetism,
Phone ++49 (30) 3481-7436, E-mail: tilmann.sander-thoemmes@ptb.de

Imke Frischmuth | PTB
Further information:
http://www.ptb.de/index_en.html

More articles from Medical Engineering:

nachricht 3-D visualization of the pancreas -- new tool in diabetes research
15.03.2017 | Umea University

nachricht New PET radiotracer identifies inflammation in life-threatening atherosclerosis
02.03.2017 | Society of Nuclear Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>