Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New microscope uses rainbow of light to image the flow of individual blood cells

Non-invasive test promises rapid, pain-free diagnoses without the use of fluorescent dyes

Blood tests convey vital medical information, but the sight of a needle often causes anxiety and results take time. A new device developed by a team of researchers in Israel, however, can reveal much the same information as a traditional blood test in real-time, simply by shining a light through the skin. This optical instrument, no bigger than a breadbox, is able to provide high-resolution images of blood coursing through our veins without the need for harsh and short-lived fluorescent dyes.

The team’s device relies on a technique called spectrally encoded confocal microscopy. (a) A single line within a blood vessel is imaged with multiple colors of light that encode lateral positions. (b) A single cell crossing the spectral line produces a two-dimensional image with one axis encoded by wavelength and the other by time. Credit: Biomedical Optics Express

An in vivo image shows red blood cells within a microvessel. The area occupied by red blood cells in the images can be used to calculate the percent volume of red blood cells, a key measurement for many medical diagnoses. Credit: Biomedical Optics Express

"We have invented a new optical microscope that can see individual blood cells as they flow inside our body," says Lior Golan, a graduate student in the biomedical engineering department at the Israel Institute of Technology, or Technion, and one of the authors on a paper describing the device that is published today in the Optical Society's (OSA) open-access journal Biomedical Optics Express. By eliminating a long wait-time for blood test results, the new microscope might help spotlight warning signs, like high white blood cell count, before a patient develops severe medical problems. The portability of the device could also enable doctors in rural areas without easy access to medical labs to screen large populations for common blood disorders, Golan notes.

Using the new microscope, the researchers imaged the blood flowing through a vessel in the lower lip of a volunteer. They successfully measured the average diameter of the red and white blood cells and also calculated the percent volume of the different cell types, a key measurement for many medical diagnoses.

The device relies on a technique called spectrally encoded confocal microscopy (SECM), which creates images by splitting a light beam into its constituent colors. The colors are spread out in a line from red to violet. To scan blood cells in motion, a probe is pressed against the skin of a patient and the rainbow-like line of light is directed across a blood vessel near the surface of the skin. As blood cells cross the line they scatter light, which is collected and analyzed. The color of the scattered light carries spatial information, and computer programs interpret the signal over time to create 2-D images of the blood cells.

Currently, other blood-scanning systems with cellular resolution do exist, but they are far less practical, relying on bulky equipment or potentially harmful fluorescent dyes that must be injected into the bloodstream.

"An important feature of the technique is its reliance on reflected light from the flowing cells to form their images, thus avoiding the use of fluorescent dyes that could be toxic," Golan says. "Since the blood cells are in constant motion, their appearance is distinctively different from the static tissue surrounding them." The team's technique also takes advantage of the one-way flow of cells to create a compact probe that can quickly image large numbers of cells while remaining stationary against the skin.

At first, the narrow field of view of the microscope made it difficult for the team to locate suitable capillary vessels to image. To solve this, the researchers added a green LED and camera to the system to provide a wider view in which the blood vessels appeared dark because hemoglobin absorbs green light. "Unfortunately, the green channel does not help in finding the depth of the blood vessel," notes Golan. "Adjusting the imaging depth of the probe for imaging a small capillary is still a challenge we will address in future research."

The researchers are also working on a second generation system with higher penetration depth.

The new system might expand the range of possible imaging sites beyond the inside lip, which was selected as a test site since it was rich in blood vessels, has no pigment to block light, and doesn't lose blood flow in trauma patients.
Additional steps include work to miniaturize the system for ease of transport and use. "Currently, the probe is a bench-top laboratory version about the size of a small shoebox," says Golan. "We hope to have a thumb-size prototype within the next year."

Paper: "Noninvasive imaging of flowing blood cells using label-free spectrally encoded flow cytometry," Golan et al., Biomedical Optics Express, Vol. 3, Issue 6, pp. 1455-1464 (2012).
EDITOR'S NOTE: High-resolution images are available to members of the media upon request. Contact Angela Stark,

About Biomedical Optics Express
Biomedical Optics Express is OSA's principal outlet for serving the biomedical optics community with rapid, open-access, peer-reviewed papers related to optics, photonics and imaging in the life sciences. The journal scope encompasses theoretical modeling and simulations, technology development, and biomedical studies and clinical applications. It is published by the Optical Society and edited by Joseph A. Izatt of Duke University. Biomedical Optics Express is an open-access journal and is available at no cost to readers online at

About OSA

Uniting more than 130,000 professionals from 175 countries, the Optical Society (OSA) brings together the global optics community through its programs and initiatives. Since 1916 OSA has worked to advance the common interests of the field, providing educational resources to the scientists, engineers and business leaders who work in the field by promoting the science of light and the advanced technologies made possible by optics and photonics. OSA publications, events, technical groups and programs foster optics knowledge and scientific collaboration among all those with an interest in optics and photonics.

Angela Stark | EurekAlert!
Further information:

More articles from Medical Engineering:

nachricht Gentle sensors for diagnosing brain disorders
29.09.2016 | King Abdullah University of Science and Technology

nachricht New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development
28.09.2016 | Lund University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>