Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Microelectronics: Automating cancer detection

A sensor developed at A*STAR can detect bladder cancer cells and track tumor progression

Microelectronic engineers in Singapore have developed and tested sensor technology that can detect and measure a chemical signature of bladder cancer. The light-based sensor could eventually be used for the early diagnosis and subsequent tracking of the progression and treatment of many different tumors, according to Yong Shin at the A*STAR Institute of Microelectronics, who led the research.

After further testing of the technology, Shin and co-workers are planning to develop a lab-on-a-chip device incorporating the sensor that can process fluid samples within about five minutes.

Genes that suppress tumors can be deactivated by the attachment of a methyl group to a specific DNA sequence — cytosine next to guanine — in their promoter region. The methyl group prevents the gene from being used as a template for protein synthesis and reduces the capacity of the cell to control its own proliferation.

Several well-established chemical methods exist for detecting such DNA methylation, but they are expensive, time-consuming and dependent on laboratory expertise. Shin and co-workers therefore investigated direct physical methods as an alternative. They focused particularly on silicon micro-ring resonators that amplify light at specific resonant frequencies. The resonators developed by the researchers are very sensitive detectors of a shift in light frequency, including the shift that occurs when a methyl group is attached or detached to DNA.

Shin and co-workers tested the capacity of silicon micro-ring resonators to discriminate between methylated and unmethylated forms of genes known to trigger cancer in bladder cells. They fashioned separate DNA probes to capture one or other form when they passed a solution of the genes, amplified by the polymerase chain reaction, over a silicon chip to which the probes were attached. The resonators clearly distinguished between the forms within five minutes. Moreover, the method allowed the team to quantify the density of methylation, which means the technique should be able to track changes in patterns of methylation.

“Our sensors could be widely useful for DNA methylation detection specifically and rapidly in the field,” says Shin.

He also notes that the team has published several research papers on using silicon micro-ring resonators. “Among the techniques we have published is a novel technique that can be integrated with the methylation-specific sensor to amplify the methylated DNA from low amounts of DNA,” he explains. “So, we are now trying to make a single microfluidic-based chip system that integrates several techniques, such as DNA extraction, conversion, amplification and detection.”

The A*STAR-affiliated researchers contributing to this research are from the Institute of Microelectronics

Journal information

Shin, Y., Perera, A. P., Kee, J. S., Song, J., Fang, Q. et al. Label-free methylation specific sensor based on silicon microring resonators for detection and quantification of DNA methylation biomarkers in bladder cancer. Sensors and Actuators B: Chemical 177, 404–411 (2013).

A*STAR Research | Research asia research news
Further information:

More articles from Medical Engineering:

nachricht Gentle sensors for diagnosing brain disorders
29.09.2016 | King Abdullah University of Science and Technology

nachricht New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development
28.09.2016 | Lund University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>