Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microelectronics: Automating cancer detection

15.08.2013
A sensor developed at A*STAR can detect bladder cancer cells and track tumor progression

Microelectronic engineers in Singapore have developed and tested sensor technology that can detect and measure a chemical signature of bladder cancer. The light-based sensor could eventually be used for the early diagnosis and subsequent tracking of the progression and treatment of many different tumors, according to Yong Shin at the A*STAR Institute of Microelectronics, who led the research.

After further testing of the technology, Shin and co-workers are planning to develop a lab-on-a-chip device incorporating the sensor that can process fluid samples within about five minutes.

Genes that suppress tumors can be deactivated by the attachment of a methyl group to a specific DNA sequence — cytosine next to guanine — in their promoter region. The methyl group prevents the gene from being used as a template for protein synthesis and reduces the capacity of the cell to control its own proliferation.

Several well-established chemical methods exist for detecting such DNA methylation, but they are expensive, time-consuming and dependent on laboratory expertise. Shin and co-workers therefore investigated direct physical methods as an alternative. They focused particularly on silicon micro-ring resonators that amplify light at specific resonant frequencies. The resonators developed by the researchers are very sensitive detectors of a shift in light frequency, including the shift that occurs when a methyl group is attached or detached to DNA.

Shin and co-workers tested the capacity of silicon micro-ring resonators to discriminate between methylated and unmethylated forms of genes known to trigger cancer in bladder cells. They fashioned separate DNA probes to capture one or other form when they passed a solution of the genes, amplified by the polymerase chain reaction, over a silicon chip to which the probes were attached. The resonators clearly distinguished between the forms within five minutes. Moreover, the method allowed the team to quantify the density of methylation, which means the technique should be able to track changes in patterns of methylation.

“Our sensors could be widely useful for DNA methylation detection specifically and rapidly in the field,” says Shin.

He also notes that the team has published several research papers on using silicon micro-ring resonators. “Among the techniques we have published is a novel technique that can be integrated with the methylation-specific sensor to amplify the methylated DNA from low amounts of DNA,” he explains. “So, we are now trying to make a single microfluidic-based chip system that integrates several techniques, such as DNA extraction, conversion, amplification and detection.”

The A*STAR-affiliated researchers contributing to this research are from the Institute of Microelectronics

Journal information

Shin, Y., Perera, A. P., Kee, J. S., Song, J., Fang, Q. et al. Label-free methylation specific sensor based on silicon microring resonators for detection and quantification of DNA methylation biomarkers in bladder cancer. Sensors and Actuators B: Chemical 177, 404–411 (2013).

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg/research/6716
http://www.researchsea.com

More articles from Medical Engineering:

nachricht New imaging technique able to watch molecular dynamics of neurodegenerative diseases
14.07.2017 | The Optical Society

nachricht Quick test finds signs of sepsis in a single drop of blood
03.07.2017 | University of Illinois at Urbana-Champaign

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>