Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microchip technology rapidly identifies compounds for regrowing nerves in live animals

12.10.2010
A faster way to look for drugs that regenerate nerve cells

Scientists have long sought the ability to regenerate nerve cells, or neurons, which could offer a new way to treat spinal-cord damage as well as neurological diseases such as Alzheimer's or Parkinson's.

Many chemicals can regenerate neurons grown in Petri dishes in the lab, but it's difficult and time-consuming to identify those chemicals that work in live animals, which is critical for developing drugs for humans.

Engineers at MIT have now used a new microchip technology to rapidly test potential drugs on tiny worms called C. elegans, which are often used in studies of the nervous system. Using the new technology, associate professor Mehmet Fatih Yanik and his colleagues rapidly performed laser surgery, delivered drugs and imaged the resulting neuron regrowth in thousands of live animals.

"Our technology helps researchers rapidly identify promising chemicals that can then be tested in mammals and perhaps even in humans," says Yanik. Using this technique, the researchers have already identified one promising class of neuronal regenerators.

The paper will appear in the online edition of the Proceedings of the National Academy of Sciences the week of Oct. 11.

C. elegans is a useful model organism for neuron regeneration because it is optically transparent, and its entire neural network is known. Yanik and colleagues had previously developed a femtosecond laser nanosurgery technique which allowed them to cut and observe regeneration of individual axons —long extensions of neurons that send signals to neighboring cells. Their femtosecond laser nanosurgery technique uses tightly-focused infrared laser pulses that are shorter than billionth of a second. This allows the laser to penetrate deep into the animals without damaging the tissues on its way, until the laser beam hits its very final target i.e. the axon.

In the PNAS study, the researchers used their microchip technology to rapidly cut the axons of single neurons that sense touch. Moving single worms from their incubation well to an imaging microchip, immobilizing them and performing laser surgery takes only about 20 seconds, which allows thousands of surgeries to be performed in a short period of time.

After laser surgery, each worm is returned to its incubation well and treated with a different chemical compound. C. elegans neurons can partially regrow without help, which allowed Yanik's team to look for drugs that can either enhance or inhibit this regrowth. After two or three days, the researchers imaged each worm to see if the drugs had any effect.

The MIT team found that a compound called staurosporine, which inhibits certain enzymes known as PKC kinases, had the strongest inhibitory effect. In a follow-up study, they tested some compounds that activate these kinases, and found that one of them stimulated regeneration of neurons significantly. Some of Yanik's students are now testing those compounds on neurons derived from human embryonic stem cells.

This microchip technology can also be used to screen compounds for their effects on other diseases such as Alzheimer's, Parkinson's and ALS, says Yanik.

Source: "Large-scale in vivo femtosecond laser neurosurgery screen reveals small-molecule enhancer of regeneration" by Chrysanthi Samara, Christopher B. Rohde, Cody L. Gilleland, Stephanie Norton, Stephen J. Haggarty and Mehmet Fatih Yanik. Proceedings of the National Academy of Sciences, 11 October, 2010.

Jennifer Hirsch | EurekAlert!
Further information:
http://www.mit.edu

More articles from Medical Engineering:

nachricht Novel breast tomosynthesis technique reduces screening recall rate
21.02.2017 | Radiological Society of North America

nachricht Biocompatible 3-D tracking system has potential to improve robot-assisted surgery
17.02.2017 | Children's National Health System

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>