Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MEDTEC Europe 2012: Implant to replace defective venous valve

01.03.2012
If heart valves don’t close properly, they are replaced. Conventional treatment of venous valve failure, however, has up to now always and exclusively been via medication. In future, an implant will assume the function of damaged valves – and a new dispensing tool means these prostheses can be made using an automated process.

It’s one of the most commonly occurring medical conditions – chronic venous in-sufficiency (CVI). Almost ten million German citizens suffer from weak veins that require treatment, with twice as many women being affected as men. The cause of this widespread condition is restricted functioning of the venous valves in the legs.


The finished venous valve is highly durable. © Helmholtz-Institute of Biomedical Engineering of RWTH Aachen

If the venous valve is no longer able to close properly, blood will observe the laws of gravity in between heartbeats and flow down to collect in the legs. This leads to edemas, and can cause open ulcers in particularly severe cases. CVI is usually treated with anti-inflammatory drugs and diuretics; as yet there is no globally available venous valve implant that can be used to treat the illness.

This is something that researchers from the Fraunhofer Institute for Manufacturing Engineering and Automation IPA in Stuttgart are setting out to change: In close collaboration with four industrial partners and Helmholtz-Institute for Biomedical Engineering of RWTH Aachen University, they have developed an automated production facility that can make venous valve prostheses from polycarbonate-urethane (PCU), a plastic. The project was sponsored by the German Federal Ministry of Economics and Technology BMWI.

The centerpiece of the facility is a 3D droplet dispensing tool which enables the researchers to precisely apply a particular polymer onto freeform surfaces and at the same time combine various grades of polymer hardness, called Shore hardnesses. “3D droplet dispensing technology is an additive procedure that allows three-dimensional geometries to be created layer by layer using a polymer”, explains Dr. Oliver Schwarz, group manager at the IPA. The scientists use PCU because it is particularly strong and flexible, while another useful property of the material is that it is easy to sew into surrounding tissue. PCU structures can be made in very thin layers, which is ideal when replacing wafer-thin atrioventricular valves. “By using PCU in combination with our 3D dispensing kinematics, we can achieve seamless transitions within the material between six different grades of elasticity and hardness – without any breaking points whatsoever. This technique mirrors the design of highly stressed structures in nature. It can’t be done using injection molding”, says Schwarz.

But how does the PCU become a venous valve prosthesis? Initially, the polymers are dissolved in a solvent and deposited onto a venous valve prosthetic mold one droplet at a time, using the dispensing tool. The system is accurate to within 25 micrometers, and can deliver up to 100 droplets per second, each with a volume of 2 to 60 nanoliters. A six-axis kinematic system positions the piezo feeder precisely above the mold. Once it is fully coated with droplets, the mold is bathed in a warm stream of nitrogen. This causes the solvent to evaporate, leaving the polymer behind. Further layers are applied by repeating the dispensing process, and in the end the polymer prosthesis can simply be peeled from the mold. Doctors can take the finished replacement valves and implant them into the veins of the leg via a catheter passed through the skin.

The production facility comprises numerous other components besides the dispenser. The IPA experts are responsible for, amongst other things, the filling and monitoring system, the drying facilities, the entire clean-room box and the control mechanism for the six-axis kinematic system. “We have successfully managed to re-program the Beckhoff control system normally used with milling machines in such a way that it can now be used with additive processes,” Schwarz is happy to report. The solution they have come up with will soon see the researcher and his team in a position to produce thin-walled, highly durable implants such as heart valves or intervertebral disks. The IPA scientists will be presenting a prototype of their 3D droplet dispenser at the MEDTEC Europe 2012 trade fair from March 13 – 15 in Stuttgart (Hall 6, Booth 6211).

Dr. rer. nat. Oliver Schwarz | Fraunhofer Research News
Further information:
http://www.fraunhofer.de/en/press/research-news/2012/march/implant-to-replace-defective-venous-valve.html

More articles from Medical Engineering:

nachricht Biocompatible 3-D tracking system has potential to improve robot-assisted surgery
17.02.2017 | Children's National Health System

nachricht Real-time MRI analysis powered by supercomputers
17.02.2017 | University of Texas at Austin, Texas Advanced Computing Center

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>