Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Mayo Clinic researchers show brain waves can 'write' on a computer in early tests

Neuroscientists at the Mayo Clinic campus in Jacksonville, Fla., have demonstrated how brain waves can be used to type alphanumerical characters on a computer screen. By merely focusing on the "q" in a matrix of letters, for example, that "q" appears on the monitor.

Researchers say these findings, presented at the 2009 annual meeting of the American Epilepsy Society, represent concrete progress toward a mind-machine interface that may, one day, help people with a variety of disorders control devices, such as prosthetic arms and legs. These disorders include Lou Gehrig's disease and spinal cord injuries, among many others.

"Over 2 million people in the United States may benefit from assistive devices controlled by a brain-computer interface," says the study's lead investigator, neurologist Jerry Shih, M.D. "This study constitutes a baby step on the road toward that future, but it represents tangible progress in using brain waves to do certain tasks."

Dr. Shih and other Mayo Clinic researchers worked with Dean Krusienski, Ph.D., from the University of North Florida on this study, which was conducted in two patients with epilepsy. These patients were already being monitored for seizure activity using electrocorticography (ECoG), in which electrodes are placed directly on the surface of the brain to record electrical activity produced by the firing of nerve cells. This kind of procedure requires a craniotomy, a surgical incision into the skull.

Dr. Shih wanted to study a mind-machine interface in these patients because he hypothesized that feedback from electrodes placed directly on the brain would be much more specific than data collected from electroencephalography (EEG), in which electrodes are placed on the scalp. Most studies of mind-machine interaction have occurred with EEG, Dr. Shih says.

"There is a big difference in the quality of information you get from ECoG compared to EEG. The scalp and bony skull diffuses and distorts the signal, rather like how the Earth's atmosphere blurs the light from stars," he says. "That's why progress to date on developing these kind of mind interfaces has been slow."

Because these patients already had ECoG electrodes implanted in their brains to find the area where seizures originated, the researchers could test their fledgling brain-computer interface.

In the study, the two patients sat in front of a monitor that was hooked to a computer running the researchers' software, which was designed to interpret electrical signals coming from the electrodes.

The patients were asked to look at the screen, which contained a 6-by-6 matrix with a single alphanumeric character inside each square. Every time the square with a certain letter flashed, and the patient focused on it, the computer recorded the brain's response to the flashing letter. The patients were then asked to focus on specific letters, and the computer software recorded the information. The computer then calibrated the system with the individual patient's specific brain wave, and when the patient then focused on a letter, the letter appeared on the screen.

"We were able to consistently predict the desired letters for our patients at or near 100 percent accuracy," Dr. Shih says. "While this is comparable to other researchers' results with EEGs, this approach is more localized and can potentially provide a faster communication rate. Our goal is to find a way to effectively and consistently use a patient's brain waves to perform certain tasks."

Once the technique is perfected, its use will require patients to have a craniotomy, although it isn't yet known how many electrodes would have to be implanted. And software would have to calibrate each person's brain waves to the action that is desired, such as movement of a prosthetic arm, Dr. Shih says. "These patients would have to use a computer to interpret their brain waves, but these devices are getting so small, there is a possibility that they could be implanted at some point," he says.

"We find our progress so far to be very encouraging," he says.

The study, which is funded by the National Science Foundation, is ongoing.

About Mayo Clinic

Mayo Clinic is the first and largest integrated, not-for-profit group practice in the world. Doctors from every medical specialty work together to care for patients, joined by common systems and a philosophy of "the needs of the patient come first." More than 3,700 physicians, scientists and researchers and 50,100 allied health staff work at Mayo Clinic, which has sites in Rochester, Minn., Jacksonville, Fla., and Scottsdale/Phoenix, Ariz. Collectively, the three locations treat more than half a million people each year. To obtain the latest news releases from Mayo Clinic, go to For information about research and education visit ( is available as a resource for your health stories.

Kevin Punsky | EurekAlert!
Further information:

More articles from Medical Engineering:

nachricht Münster researchers make a fly’s heartbeat visible / Software automatically recognizes pulse
12.03.2018 | Westfälische Wilhelms-Universität Münster

nachricht 3-D-written model to provide better understanding of cancer spread
05.03.2018 | Purdue University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

A new kind of quantum bits in two dimensions

19.03.2018 | Physics and Astronomy

Scientists have a new way to gauge the growth of nanowires

19.03.2018 | Materials Sciences

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Science & Research
Overview of more VideoLinks >>>