Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Mayo Clinic researchers show brain waves can 'write' on a computer in early tests

Neuroscientists at the Mayo Clinic campus in Jacksonville, Fla., have demonstrated how brain waves can be used to type alphanumerical characters on a computer screen. By merely focusing on the "q" in a matrix of letters, for example, that "q" appears on the monitor.

Researchers say these findings, presented at the 2009 annual meeting of the American Epilepsy Society, represent concrete progress toward a mind-machine interface that may, one day, help people with a variety of disorders control devices, such as prosthetic arms and legs. These disorders include Lou Gehrig's disease and spinal cord injuries, among many others.

"Over 2 million people in the United States may benefit from assistive devices controlled by a brain-computer interface," says the study's lead investigator, neurologist Jerry Shih, M.D. "This study constitutes a baby step on the road toward that future, but it represents tangible progress in using brain waves to do certain tasks."

Dr. Shih and other Mayo Clinic researchers worked with Dean Krusienski, Ph.D., from the University of North Florida on this study, which was conducted in two patients with epilepsy. These patients were already being monitored for seizure activity using electrocorticography (ECoG), in which electrodes are placed directly on the surface of the brain to record electrical activity produced by the firing of nerve cells. This kind of procedure requires a craniotomy, a surgical incision into the skull.

Dr. Shih wanted to study a mind-machine interface in these patients because he hypothesized that feedback from electrodes placed directly on the brain would be much more specific than data collected from electroencephalography (EEG), in which electrodes are placed on the scalp. Most studies of mind-machine interaction have occurred with EEG, Dr. Shih says.

"There is a big difference in the quality of information you get from ECoG compared to EEG. The scalp and bony skull diffuses and distorts the signal, rather like how the Earth's atmosphere blurs the light from stars," he says. "That's why progress to date on developing these kind of mind interfaces has been slow."

Because these patients already had ECoG electrodes implanted in their brains to find the area where seizures originated, the researchers could test their fledgling brain-computer interface.

In the study, the two patients sat in front of a monitor that was hooked to a computer running the researchers' software, which was designed to interpret electrical signals coming from the electrodes.

The patients were asked to look at the screen, which contained a 6-by-6 matrix with a single alphanumeric character inside each square. Every time the square with a certain letter flashed, and the patient focused on it, the computer recorded the brain's response to the flashing letter. The patients were then asked to focus on specific letters, and the computer software recorded the information. The computer then calibrated the system with the individual patient's specific brain wave, and when the patient then focused on a letter, the letter appeared on the screen.

"We were able to consistently predict the desired letters for our patients at or near 100 percent accuracy," Dr. Shih says. "While this is comparable to other researchers' results with EEGs, this approach is more localized and can potentially provide a faster communication rate. Our goal is to find a way to effectively and consistently use a patient's brain waves to perform certain tasks."

Once the technique is perfected, its use will require patients to have a craniotomy, although it isn't yet known how many electrodes would have to be implanted. And software would have to calibrate each person's brain waves to the action that is desired, such as movement of a prosthetic arm, Dr. Shih says. "These patients would have to use a computer to interpret their brain waves, but these devices are getting so small, there is a possibility that they could be implanted at some point," he says.

"We find our progress so far to be very encouraging," he says.

The study, which is funded by the National Science Foundation, is ongoing.

About Mayo Clinic

Mayo Clinic is the first and largest integrated, not-for-profit group practice in the world. Doctors from every medical specialty work together to care for patients, joined by common systems and a philosophy of "the needs of the patient come first." More than 3,700 physicians, scientists and researchers and 50,100 allied health staff work at Mayo Clinic, which has sites in Rochester, Minn., Jacksonville, Fla., and Scottsdale/Phoenix, Ariz. Collectively, the three locations treat more than half a million people each year. To obtain the latest news releases from Mayo Clinic, go to For information about research and education visit ( is available as a resource for your health stories.

Kevin Punsky | EurekAlert!
Further information:

More articles from Medical Engineering:

nachricht Gentle sensors for diagnosing brain disorders
29.09.2016 | King Abdullah University of Science and Technology

nachricht New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development
28.09.2016 | Lund University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>