Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayo Clinic's new imaging technology accurately identifies a broad spectrum of liver disease

04.11.2008
A new study shows that an imaging technology developed by Mayo Clinic researchers can identify liver fibrosis with high accuracy and help eliminate the need for liver biopsies. Liver fibrosis is a common condition that can lead to incurable cirrhosis if not treated in time.

The technology, called magnetic resonance elastography (MRE), produces color-coded images known as elastograms that indicate how internal organs, muscles and tissues would feel to the touch. Red is the stiffest; purple, the softest. Other imaging techniques do not provide this information.

"Knowing the liver's elasticity or stiffness is invaluable in diagnosing liver disease," says Jayant Talwalkar, M.D., M.P.H., a Mayo Clinic hepatologist and co-investigator on the study. "A healthy liver is very soft, while a liver with early disease begins to stiffen. A liver with cirrhosis, advanced liver disease, can be rock hard."

The study, which included 113 patients, will be presented Nov. 3 at The Liver Meeting, an annual gathering of the American Association for the Study of Liver Disease, in San Francisco. Study participants had undergone liver biopsy in the year preceding the study and had a wide variety of liver diseases, including nonalcoholic and alcoholic fatty liver disease, hepatitis C, hepatitis B, autoimmune hepatitis, primary biliary cirrhosis and primary sclerosing cholangitis. Patients ranged in age from 19 to 78, and their body weight ranged from normal to severely obese.

"Results showed that elastography was highly accurate in detecting moderate-to-severe hepatic fibrosis even with the variety in age, types of liver disease and body size," says Dr. Talwalkar. Among the study's findings:

The detection of cirrhosis by MRE when compared to liver biopsy results was 88 percent accurate.

Patients with nonalcoholic fatty liver disease and no significant inflammation or fibrosis were identified with 97 percent accuracy.

"Using MRE, we can confidently avoid liver biopsies for patients with no evidence of advanced fibrosis, as well as for patients with cirrhosis," says Dr. Talwalkar.

Liver biopsies, conducted by extracting tissue samples with a needle, can underestimate the degree of hepatic fibrosis about 20 to 30 percent of the time because of the patchy distribution of fibrosis that occurs in the liver. Another drawback is that since liver biopsy is invasive, patients may be reluctant to have a biopsy performed and sometimes delay the procedure when liver disease is first suspected, says Dr. Talwalkar.

"Our goal in hepatology is to be able to diagnose liver disease early so that novel as well as established therapies can be provided to our patients," says Dr. Talwalkar. Treatment and lifestyle changes can help stop the progression of hepatic fibrosis to liver cirrhosis and liver failure, which would eventually require a liver transplant.

The incidence and prevalence of chronic liver disease is increasing in the United States. Nonalcoholic fatty liver disease has become the most common liver disease and is linked to the growing numbers of patients with obesity and diabetes. The number of patients seeking medical care for hepatitis C is also increasing. This disease, spread by coming into contact with blood contaminated by the virus, slowly damages the liver over decades.

MRE research began at Mayo Clinic about 10 years ago. The technology measures low-frequency acoustic waves transmitted into the abdomen. The wave motions measured are miniscule, 0.01 of the width of a human hair.

The noninvasive procedure takes seconds to conduct. Mayo Clinic is already using MRE to diagnose patients with liver conditions. Research is under way to study how MRE might aid in the diagnosis of Alzheimer's disease and some cancers.

Amy Tieder | EurekAlert!
Further information:
http://www.mayo.edu

More articles from Medical Engineering:

nachricht A Challenging European Research Project to Develop New Tiny Microscopes
28.03.2017 | Technische Universität Braunschweig

nachricht 3-D visualization of the pancreas -- new tool in diabetes research
15.03.2017 | Umea University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>