Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mathematical approach contributes to lower radiation dose in computed tomography

25.11.2009
Siemens develops innovative method for iterative reconstruction of CT images

One of the main challenges of computed tomography (CT) is to provide excellent image quality while exposing patients to the lowest possible dose of radiation. Reductions in dose application typically lead to increased image noise and loss of image quality.

For this reason, Siemens Healthcare has developed "Iterative Reconstruction in Image Space (IRIS)" to generate high-quality images, acquired with smaller radiation doses. A CT takes a multitude of X-ray data from different directions and uses the information to calculate clinical images, which can then be analyzed by physicians. The newly introduced IRIS algorithm for the reconstruction of sectional views from CT raw data makes better use of the information contained in the source data, yet is much faster than previous approaches to iterative processes in spite of additional reconstruction steps. Compared to the current standard method for image reconstruction, the so-called Filtered Back Projection (FBP), IRIS offers two options to users of the Siemens procedure: They can either generate the same image quality as with FBP and reduce the dose by up to 60 percent or they can maintain the same dose and generate significantly better image quality than with FBP. IRIS is currently being tested at several university hospitals. Most systems of the Somatom Definition product family will be equipped with the new technology from the second quarter of 2010.

In modern spiral CT devices, patients move through a ring-shaped tunnel (gantry) at a specific speed, while the X-ray tube assembly-detector combination continuously rotates around their body.

Mathematical procedures calculate the attenuation coefficient in the cross-section plane as well as the spatial distribution of density from the attenuation of the radiation as it passes through the body. These measuring values, or raw data, are then used to reconstruct clinical images at different spatial planes, such as axial, frontal, sagittal etc. The standard reconstruction method currently in use is Filtered Back Projection (FBP), an algorithm that converts the raw data into image data with filtering and back projection to the image plane. This process involves a compromise between spatial image resolution or image quality, and image noise. The dose must be increased to lower the image noise and achieve better image quality.

Iterative reconstruction was first described in the 1970s as a promising method to generate clinical images with low noise. The image generation process of this procedure includes a "correction loop," in which the sectional images are calculated in stages by a gradual approximation to the actual density distribution. For this purpose, the system makes an assumption about the density distribution of the tissue slices to be examined and calculates an output image. New, synthetic projection data are generated from this output image and compared to the actual, "real" raw measuring data. If they don't match, the system will calculate a corresponding correction image to correct the output image. In a next step, the system will again synthesize the projection data and compare them to the measured raw data. This iteration continues until a specified abort criterion is met. After this process, the corrected image shows improved spatial image resolution in highcontrast regions, while the image noise in low-contrast areas is reduced.

The image becomes softer in tissue regions with homogeneous density, while high-contrast tissue boundaries are maintained. As a consequence, image resolution and image noise are no longer tied to one another. One problem associated with the method is the fact that the measuring system of the CT device must be precisely modeled mathematically during the computation of the synthetic projection data, which requires immense computing power. In addition, a large number of iterations is required. As a consequence, the calculation time for reconstruction and the computing capacity requirements increase to such an extent that the procedure cannot be practically applied in clinical settings.

Until recently, the so-called "statistical iterative reconstruction“ was considered a solution. It avoids the exact mathematical modeling of the measuring system and drastically reduces the number of iterations to avoid lengthy computing times. A large portion of noise is removed on the basis of a simple statistical correction model, which only focuses on the noise properties of the measuring data. This aggressive method accelerates the lower-noise reconstruction of the images considerably, but generates sectional images that may differ so substantially from the results of the standard FBP that radiologists are often disturbed by the texture.

In contrast to "statistical iterative reconstruction," the reconstruction algorithm Iterative Reconstruction in Image Space (IRIS) by Siemens Healthcare uses a different approach to accelerate the image reconstruction. The core of the innovative approach is the fact that all raw data information is transferred from the slow-processing raw data area to the more efficient image data area in the first reconstruction cycle. The resulting "master image" contains finest details, but also significant image noise, which is removed in the subsequent iterative steps in the image data area.

In this manner, the image is gradually cleared of image noise and artifacts in small iterative steps that do not affect the high spatial image resolution. This eliminates the need for timeconsuming back projections. The novel approach allows Siemens experts to simply construct a highly precise reflection of the actual properties of the final image from the raw data of a CT scan with relatively little computing effort. IRIS, which allows scanning with up to 60 percent less radiation, can reach the same signal to noise ratio as Filtered Back Projection (FBP) with a full dose.

As a consequence, the new algorithm is able to significantly reduce the radiation dose without quality losses. As an alternative, the iterative reconstruction method by Siemens can also be used to substantially increase the image quality of reconstructed images with the same dose. This was confirmed by U. Joseph Schoepf, MD, Professor of Radiology and Cardiology, Director of CT Research and Development at the Medical University of South Carolina: "Iterative Reconstruction in Image Space lets me save up to 60 percent of the radiation dose in a number of routine applications, while maintaining the usual excellent image quality."

"Radiation protection and dose reduction in CT have been top priorities of Siemens Healthcare ever since the company came out with the first computed tomograph (CT) in 1974. We have already introduced a series of technical innovations to our CT systems that contribute to dose reduction," explained Dr. Sami Atiya, CEO Computed Tomography at Siemens Healthcare. "With IRIS we can significantly reduce radiation exposure in virtually all CT examinations.”

The Siemens Healthcare Sector is one of the world's largest suppliers to the healthcare industry and a trendsetter in medical imaging, laboratory diagnostics, medical information technology and hearing aids. Siemens is the only company to offer customers products and solutions for the entire range of patient care from a single source – from prevention and early detection to diagnosis, and on to treatment and aftercare. By optimizing clinical workflows for the most common diseases, Siemens also makes healthcare faster, better and more cost-effective. Siemens Healthcare employs some 49,000 employees worldwide and operates in over 130 countries. In fiscal year 2008 (to September 30), the Sector posted revenue of 11.2 billion euros and profit of 1.2 billion euros.

Marion Bludszuweit | Siemens Healthcare
Further information:
http://www.siemens.com/med-pictures/IRIS
http://www.siemens.com/healthcare

More articles from Medical Engineering:

nachricht UTSA study describes new minimally invasive device to treat cancer and other illnesses
02.12.2016 | University of Texas at San Antonio

nachricht Earlier Alzheimer's diagnosis may be possible with new imaging compound
02.11.2016 | Washington University School of Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>