Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Massachusetts General-developed protocol could greatly extend preservation of donor livers

30.06.2014

Supercooling and machine perfusion allow transplantation of rat livers preserved for up to four days

A system developed by investigators at the Massachusetts General Hospital (MGH) Center for Engineering in Medicine allowed successful transplantation of rat livers after preservation for as long as four days, more than tripling the length of time organs currently can be preserved. The team describes their protocol – which combines below-freezing temperatures with the use of two protective solutions and machine perfusion of the organ – in a Nature Medicine paper receiving advance online publication.


In a system developed at the Mass. General Hospital Center for Engineering in Medicine, perfusion of a rat liver with preservative solutions before and after supercooling helped enable successful transplantation after up to four days.

Credit: MGH Photography Department

"To our knowledge, this is the longest preservation time with subsequent successful transplantation achieved to date," says Korkut Uygun, PhD, of the MGH Center for Engineering in Medicine (MGH-CEM), co-senior author of the report. "If we can do this with human organs, we could share organs globally, helping to alleviate the worldwide organ shortage."

Once the supply of oxygen and nutrients is cut off from any organ, it begins to deteriorate. Since the 1980s, donor organs have been preserved at temperatures at or just above freezing (0˚ Celsius or 32˚ Fahrenheit) in a solution developed at the University of Wisconsin (UW solution), which reduces metabolism and organ deterioration ten-fold for up to 12 hours. Extending that preservation time, the authors note, could increase both the distance a donor organ could safely be transported and the amount of time available to prepare a recipient for the operation.

Keeping an organ at below-freezing temperatures, a process called supercooling, could extend preservation time by further slowing metabolism, it also could damage the organ in several ways. To reduce those risks the MGH-CEM protocol involves the use of two protective solutions – polyethylene glycol (PEG), which protects cell membranes, and a glucose derivative called 3-OMG, which is taken into liver cells.

After removal from donor animals, the livers were attached to a machine perfusion system – in essence, an 'artificial body' that supports basic organ function – where they were first loaded with 3-OMG and then flushed with a combination of UW and PEG solutions while being cooled to 4˚C (40˚ F). The organs were then submerged in UW/PEG solution and stored at -6˚C (21˚F) for either 72 or 96 hours, after which the temperature was gradually increased back to 4˚C. The organs were then machine perfused with UW/PEG solution at room temperature for three hours before being transplanted into healthy rats.

All of the animals that received organs supercooled for 72 hours were healthy at the end of the three-month study follow-up period. Although only 58 percent of animals receiving organs supercooled for 96 hours survived for three months, analysis of several factors done while the organs were being rewarmed could distinguish between the organs that were and were not successfully transplanted.

"This ability to assess the livers prior to transplantation allows us to determine whether the supercooled organ is still good enough for transplantation," explains study co-author Bote Bruinsma, MSc, of the MGH-CEM. "Even among the livers preserved for four days, if we had only used those in which oxygen uptake, bile production and the flow of perfusion solution were good, we would have achieved 100 percent survival."

While much work needs to be done before this approach can be applied to human patients, extending how long an organ can safely be preserved may eventually allow the use of organs currently deemed unsuitable for transplant, notes Martin Yarmush, MD, PhD, founding director of MGH-CEM and co-senior author of the paper. "By reducing the damage that can occur during preservation and transportation, our supercooling protocol may permit use of livers currently considered marginal – something we will be investigating – which could further reduce the long waiting lists for transplants." Yarmush and Uygun are both on the faculty of Harvard Medical School.

###

Lead author of the Nature Medicine report is Tim Berendsen, MD, formerly of the MGH Center for Engineering in Medicine and now at the University Medical Center at Utrecht, the Netherlands. Additional co-authors are Catheleyne Puts, Nima Saeidi, Berk Usta, Basak Uygun, Maria-Louisa Izamis and Mehmet Toner, all of the MGH-CEM. The study was supported by National Institutes of Health grants R01EB008678, R01DK096075, R01DK084053, R00DK080942 and R00DK088962 and funds from Shriners Hospitals for Children. Several patents covering the work described in this paper are pending.

Massachusetts General Hospital, founded in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $785 million and major research centers in AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, human genetics, medical imaging, neurodegenerative disorders, regenerative medicine, reproductive biology, systems biology, transplantation biology and photomedicine.

Cassandra Aviles | Eurek Alert!

More articles from Medical Engineering:

nachricht A laser for your eyes
18.04.2016 | Lomonosov Moscow State University

nachricht New technology for examining cardiovascular blood vessels
14.04.2016 | Laser Zentrum Hannover e.V.

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nuclear Pores Captured on Film

Using an ultra fast-scanning atomic force microscope, a team of researchers from the University of Basel has filmed “living” nuclear pore complexes at work for the first time. Nuclear pores are molecular machines that control the traffic entering or exiting the cell nucleus. In their article published in Nature Nanotechnology, the researchers explain how the passage of unwanted molecules is prevented by rapidly moving molecular “tentacles” inside the pore.

Using high-speed AFM, Roderick Lim, Argovia Professor at the Biozentrum and the Swiss Nanoscience Institute of the University of Basel, has not only directly...

Im Focus: 2+1 is Not Always 3 - In the microworld unity is not always strength

If a person pushes a broken-down car alone, there is a certain effect. If another person helps, the result is the sum of their efforts. If two micro-particles are pushing another microparticle, however, the resulting effect may not necessarily be the sum their efforts. A recent study published in Nature Communications, measured this odd effect that scientists call “many body.”

In the microscopic world, where the modern miniaturized machines at the new frontiers of technology operate, as long as we are in the presence of two...

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

New fabrication and thermo-optical tuning of whispering gallery microlasers

04.05.2016 | Physics and Astronomy

Introducing the disposable laser

04.05.2016 | Physics and Astronomy

A new vortex identification method for 3-D complex flow

04.05.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>