Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetically guided capsule endoscope system from Siemens and Olympus for comfortable examination of the stomach

25.10.2010
More than 50 participants in the first successful study Siemens Healthcare and Olympus Medical Systems Corporation developed a new technology for stomach examinations that allows comfortable patient procedures. The patient swallows a capsule that is navigated via a joystick and a magnetic field through the stomach.

The capsule wirelessly transmits images from inside the stomach to an image processing system where the doctor can view the images. The results of the first feasibility study published in the journal “Endoscopy” show that this innovative new method functions feasible and sufficiently accurate.

A conceptual model of the technology is introduced to the public for the first time at the Olympus booth at the United European Gastroenterology Week (UEGW) in Barcelona (October 23 – 27).

The prototype of the magnetically guided capsule endoscope (MGCE) system was jointly developed by Siemens and Olympus and consists of an innovative guidance magnet, an image processing and guidance information system as well as the capsule endoscope. The patient swallows the capsule together with water.

The patient is positioned in the system so that his stomach including the capsule is located in the center of an artificially generated magnetic field. The magnet generates varying magnetic fields in real time to navigate the capsule. The magnetic field enables the physician to control the capsule with a joystick. The cameras at both ends of the capsule transmit images from inside the stomach to the image processing system where the doctor can view the images. The capsule endoscope is approximately 31 mm long and measuring 11 mm in diameter.

A feasibility study of the magnetically guided capsule system (MGCE) has been performed at the renowned Institute Arnault Tzanck in Saint Laurent du Var (France) by Dr. Jean-Francois Rey and his colleagues H. Ogata, N. Hosoe, K. Ohtsuka, N. Ogata, K. Ikeda, H. Aihara, I. Pangtay, T. Hibi,S. Kudo and H. Tajiri.

The study was published by the journal “Endoscopy”1 and showed that the new technology appears to be feasible and sufficiently accurate for gastric examination and may permit endoscopic examinations that are more patient-friendly and without sedation.

In a study with more than 50 people, 30 findings were detected in the stomach. Fourteen of the 30 findings were detected with both the capsule and the conventional endoscope. Ten out of 30 were located with the capsule examination only and six with the conventional endoscope only.

“The magnetically guided capsule system provides reliable results for gastrointestinal endoscopic examinations compared to conventional endoscopy. The capsule enables much less invasive sto-mach examinations. It means an enormous boost in acceptability for the patient “, concluded Dr. Jean-Francois Rey with respect to the feasibility study. The study participants were equally enthu-siastic: 93% thought the examination comfortable, 89% found it easy to swallow the capsule, and regarding future examinations, all patients questioned preferred the magnetically guided capsule endoscope over conventional gastrointestinal endoscopy.

At UEGW, Dr. Rey presented the results of the first study. In a study entitled “First Feasibility Study of Stomach Exploration with a Guided Capsule Endoscopy”, Dr. Keiichi Ikeda, the Jikei University, Tokyo, Japan, will also report his research results in Barcelona.

The Siemens Healthcare Sector is one of the world's largest suppliers to the healthcare industry and a trendsetter in medical imaging, laboratory diagnostics, medical information technology and hearing aids. Siemens offers its customers products and solutions for the entire range of patient care from a single source – from prevention and early detection to diagnosis, and on to treatment and aftercare. By optimizing clinical workflows for the most common diseases, Siemens also makes healthcare faster, better and more cost-effective. Siemens Healthcare employs some 48,000 employees worldwide and operates around the world. In fiscal year 2009 (to September 30), the Sector posted revenue of 11.9 bil-lion euros and profit of around 1.5 billion euros.

The product mentioned here is not commercially available. Due to regulatory reasons the future availability in any country cannot be guaranteed. Further details are available from the local Siemens organizations. The outcomes achieved by the Siemens customers described herein were achieved in the customer's unique setting. Since there is no "typical" hospital and many variables exist (e.g., hospital size, case mix, level of IT adoption) there can be no guarantee that others will achieve the same results. 1 Dr. Jean-Francois Rey, H. Ogata, N. Hosoe, K. Ohtsuka, N. Ogata, K. Ikeda, H. Aihara, I. Pangtay, T. Hibi, S. Kudo, H. Tajiri “Feasibility of stomach exploration with a guided capsule endoscope“, Endoscopy 2010

Florian Gersbach | Siemens Healthcare
Further information:
http://www.siemens.com/press/healthcare
http://www.siemens.com/healthcare

More articles from Medical Engineering:

nachricht Novel PET tracer identifies most bacterial infections
06.10.2017 | Society of Nuclear Medicine and Molecular Imaging

nachricht Teleoperating robots with virtual reality
05.10.2017 | Massachusetts Institute of Technology, CSAIL

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>