Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Maglev tissues could speed toxicity tests

25.01.2013
Scientists use magnetic levitation to make in vitro lung tissue more realistic

In a development that could lead to faster and more effective toxicity tests for airborne chemicals, scientists from Rice University and the Rice spinoff company Nano3D Biosciences have used magnetic levitation to grow some of the most realistic lung tissue ever produced in a laboratory.

The research is part of an international trend in biomedical engineering to create laboratory techniques for growing tissues that are virtually identical to those found in people's bodies. In the new study, researchers combined four types of cells to replicate tissue from the wall of the bronchiole deep inside the lung.

The research is available online and scheduled to appear in a future issue of the journal Tissue Engineering Part C: Methods.

"One of the unique things about the magnetic levitation technology is that it allows us to move cells around and arrange them the way that we want for a particular types of tissue," said study co-author Tom Killian, professor and department chair of physics and astronomy at Rice. "This is the first time anyone has arranged these four cell types in the same way that they are found in lung tissue."

In vitro laboratory tests have historically been conducted on 2-D cell cultures grown in flat petri dishes, but scientists have become increasingly aware that cells in flat cultures sometimes behave and interact differently than cells that are immersed in 3-D tissue.

Killian and fellow scientists from Rice and the University of Texas MD Anderson Cancer Center co-founded Nano3D Biosciences in 2009 after creating a technology that uses magnetism to levitate and grow 3-D cell cultures. The technology relies on inert, nontoxic magnetic nanoparticles that are inserted into the living cells. Researchers can then use magnets to lift and suspend the cells as they grow and divide.

"Growing realistic lung tissues in vitro is a particular challenge," said study co-author Jane Grande-Allen, professor of bioengineering at Rice. "There are a number of technical obstacles, and scientific funding agencies have placed a particular emphasis on lung tissue because there's a large potential payoff in terms of reducing costs for pharmaceutical and toxicological testing."

Nano3D Biosciences won a Small Business Innovation Research (SBIR) grant from the National Science Foundation (NSF) in 2011 to create a four-layered lung tissue from endothelial cells, smooth muscle cells, fibroblasts and epithelial cells.

Glauco Souza, the company's chief scientific officer and co-founder, said the project switched into high gear when Rice bioengineering graduate student Hubert Tseng joined the research team as an intern. Tseng was already a student in Grande-Allen's lab, one of Rice's leading laboratories for tissue-engineering research.

"Hubert's and Jane's expertise in tissue engineering was invaluable for tackling this problem," Souza said.

Another collaboration that paid off big was a partnership with a group of undergraduate students at Rice's Oshman Engineering Design Kitchen. The undergraduate team, Cells in 3-D, worked on a magnetic pen that could be used to grab, move and combine magnetized 3-D cell cultures. Souza said Tseng used a version of this tool to create layered bronchiole tissues for this new study.

Tseng said the new tissue resembles native bronchiole tissue more closely than any other tissue yet created in the lab.

"We conducted a number of tests, and the tissue has the same biochemical signature as native tissue," Tseng said. "We also used primary cells rather than engineered cells, which is important for toxicological testing because primary cells provide the closest possible match to native cells."

Souza said bronchiole tissue could solve another problem that's frequently encountered in testing the toxicity of airborne agents.

"With traditional 2-D cultures, it is very difficult to culture cells at the air-liquid interface, which is what you'd prefer for toxicity testing," he said. "With our technology, we can easily levitate the bronchiole tissue to the air-liquid interface so that airborne toxins are exposed to the epithelial layer of the tissue, just as it would occur in the lungs."

Grande-Allen said Tseng and other members of her group have already used the same methods pioneered in the bronchiole study to produce heart valve tissue; Souza said the NSF has awarded the company with a second phase of SBIR funding to further develop the technique for other types of tissue.

Study co-authors include Robert Raphael, professor of bioengineering at Rice and co-founder of Nano3D Biosciences; Dr. Robert Moore, a pediatric pulmonologist at Baylor College of Medicine (BCM); and former BCM scientist Jacob Gage, now with Nano3D Biosciences.

The research was funded by NSF and the Texas Emerging Technologies Fund.

High-resolution IMAGES are available for download at: http://news.rice.edu/wp-content/uploads/2013/01/0128-LUNG-all4-lg.jpg

CAPTION: This composite shows 3-D cultures of four types of cells that Rice University scientists combined in vitro to create bronchiole lung tissue. The cells are: epithelial cells (EpiC), smooth muscle cells (SMC), pulmonary fibroblasts (HPF) and pulmonary endothelial cells (PEC).

CREDIT: Hubert Tseng/Rice University

http://news.rice.edu/wp-content/uploads/2013/01/0128-LUNG-slide-lg.jpg

CAPTION: This microscopic image shows the structure and layers of in vitro bronchiole tissue created at Rice University and Nano3D Biosciences. The cell layers include epithelial cells (EpiC), smooth muscle cells (SMC), pulmonary fibroblasts (PF) and pulmonary endothelial cells (PEC).

CREDIT: Hubert Tseng/Rice University

http://news.rice.edu/wp-content/uploads/2013/01/0128-LUNG-petri-lg.jpg

CAPTION: Rice University spinoff company Nano3D Biosciences uses magnetic levitation to grow three dimensional cell cultures. The technology uses inert, nontoxic nanoparticles and magnets to lift and suspend cells as they grow and divide.

CREDIT: Nano3D Biosciences

http://news.rice.edu/wp-content/uploads/2013/01/0128-LUNG-group-lg.jpg

CAPTION: Scientists from Rice University and the Rice spinoff company Nano3D Biosciences have used magnetic levitation to grow realistic lung tissue in vitro. From left are Glauco Souza, Jacob Gage, Tom Killian, Jane Grande-Allen and Hubert Tseng.

CREDIT: Jeff Fitlow/Rice University

A copy of the paper is available at: http://online.liebertpub.com/doi/abs/10.1089/ten.TEC.2012.0157

This release can be found online at news.rice.edu.

Follow Rice News and Media Relations via Twitter @RiceUNews

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,708 undergraduates and 2,374 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 2 for "best value" among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to http://tinyurl.com/AboutRice.

David Ruth | EurekAlert!
Further information:
http://www.rice.edu

More articles from Medical Engineering:

nachricht New investigation of endovenous laser ablation of varicose veins
11.05.2016 | Kazan Federal University

nachricht A laser for your eyes
18.04.2016 | Lomonosov Moscow State University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

Im Focus: Transparent - Flexible - Printable: Key technologies for tomorrow’s displays

The trend-forward world of display technology relies on innovative materials and novel approaches to steadily advance the visual experience, for example through higher pixel densities, better contrast, larger formats or user-friendler design. Fraunhofer ISC’s newly developed materials for optics and electronics now broaden the application potential of next generation displays. Learn about lower cost-effective wet-chemical printing procedures and the new materials at the Fraunhofer ISC booth # 1021 in North Hall D during the SID International Symposium on Information Display held from 22 to 27 May 2016 at San Francisco’s Moscone Center.

Economical processing

Im Focus: Trojan horses for hospital bugs

Staphylococcus aureus usually is a formidable bacterial pathogen. Sometimes, however, weakened forms are found in the blood of patients. Researchers of the University of Würzburg have now identified one mutation responsible for that phenomenon.

Staphylococcus aureus is a bacterium that is frequently found on the human skin and in the nose where it usually behaves inconspicuously. However, once inside...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

Rutgers scientists help create world's largest coral gene database

24.05.2016 | Earth Sciences

New technique controls autonomous vehicles on a dirt track

24.05.2016 | Information Technology

Programmable materials find strength in molecular repetition

24.05.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>