Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Maglev tissues could speed toxicity tests

25.01.2013
Scientists use magnetic levitation to make in vitro lung tissue more realistic

In a development that could lead to faster and more effective toxicity tests for airborne chemicals, scientists from Rice University and the Rice spinoff company Nano3D Biosciences have used magnetic levitation to grow some of the most realistic lung tissue ever produced in a laboratory.

The research is part of an international trend in biomedical engineering to create laboratory techniques for growing tissues that are virtually identical to those found in people's bodies. In the new study, researchers combined four types of cells to replicate tissue from the wall of the bronchiole deep inside the lung.

The research is available online and scheduled to appear in a future issue of the journal Tissue Engineering Part C: Methods.

"One of the unique things about the magnetic levitation technology is that it allows us to move cells around and arrange them the way that we want for a particular types of tissue," said study co-author Tom Killian, professor and department chair of physics and astronomy at Rice. "This is the first time anyone has arranged these four cell types in the same way that they are found in lung tissue."

In vitro laboratory tests have historically been conducted on 2-D cell cultures grown in flat petri dishes, but scientists have become increasingly aware that cells in flat cultures sometimes behave and interact differently than cells that are immersed in 3-D tissue.

Killian and fellow scientists from Rice and the University of Texas MD Anderson Cancer Center co-founded Nano3D Biosciences in 2009 after creating a technology that uses magnetism to levitate and grow 3-D cell cultures. The technology relies on inert, nontoxic magnetic nanoparticles that are inserted into the living cells. Researchers can then use magnets to lift and suspend the cells as they grow and divide.

"Growing realistic lung tissues in vitro is a particular challenge," said study co-author Jane Grande-Allen, professor of bioengineering at Rice. "There are a number of technical obstacles, and scientific funding agencies have placed a particular emphasis on lung tissue because there's a large potential payoff in terms of reducing costs for pharmaceutical and toxicological testing."

Nano3D Biosciences won a Small Business Innovation Research (SBIR) grant from the National Science Foundation (NSF) in 2011 to create a four-layered lung tissue from endothelial cells, smooth muscle cells, fibroblasts and epithelial cells.

Glauco Souza, the company's chief scientific officer and co-founder, said the project switched into high gear when Rice bioengineering graduate student Hubert Tseng joined the research team as an intern. Tseng was already a student in Grande-Allen's lab, one of Rice's leading laboratories for tissue-engineering research.

"Hubert's and Jane's expertise in tissue engineering was invaluable for tackling this problem," Souza said.

Another collaboration that paid off big was a partnership with a group of undergraduate students at Rice's Oshman Engineering Design Kitchen. The undergraduate team, Cells in 3-D, worked on a magnetic pen that could be used to grab, move and combine magnetized 3-D cell cultures. Souza said Tseng used a version of this tool to create layered bronchiole tissues for this new study.

Tseng said the new tissue resembles native bronchiole tissue more closely than any other tissue yet created in the lab.

"We conducted a number of tests, and the tissue has the same biochemical signature as native tissue," Tseng said. "We also used primary cells rather than engineered cells, which is important for toxicological testing because primary cells provide the closest possible match to native cells."

Souza said bronchiole tissue could solve another problem that's frequently encountered in testing the toxicity of airborne agents.

"With traditional 2-D cultures, it is very difficult to culture cells at the air-liquid interface, which is what you'd prefer for toxicity testing," he said. "With our technology, we can easily levitate the bronchiole tissue to the air-liquid interface so that airborne toxins are exposed to the epithelial layer of the tissue, just as it would occur in the lungs."

Grande-Allen said Tseng and other members of her group have already used the same methods pioneered in the bronchiole study to produce heart valve tissue; Souza said the NSF has awarded the company with a second phase of SBIR funding to further develop the technique for other types of tissue.

Study co-authors include Robert Raphael, professor of bioengineering at Rice and co-founder of Nano3D Biosciences; Dr. Robert Moore, a pediatric pulmonologist at Baylor College of Medicine (BCM); and former BCM scientist Jacob Gage, now with Nano3D Biosciences.

The research was funded by NSF and the Texas Emerging Technologies Fund.

High-resolution IMAGES are available for download at: http://news.rice.edu/wp-content/uploads/2013/01/0128-LUNG-all4-lg.jpg

CAPTION: This composite shows 3-D cultures of four types of cells that Rice University scientists combined in vitro to create bronchiole lung tissue. The cells are: epithelial cells (EpiC), smooth muscle cells (SMC), pulmonary fibroblasts (HPF) and pulmonary endothelial cells (PEC).

CREDIT: Hubert Tseng/Rice University

http://news.rice.edu/wp-content/uploads/2013/01/0128-LUNG-slide-lg.jpg

CAPTION: This microscopic image shows the structure and layers of in vitro bronchiole tissue created at Rice University and Nano3D Biosciences. The cell layers include epithelial cells (EpiC), smooth muscle cells (SMC), pulmonary fibroblasts (PF) and pulmonary endothelial cells (PEC).

CREDIT: Hubert Tseng/Rice University

http://news.rice.edu/wp-content/uploads/2013/01/0128-LUNG-petri-lg.jpg

CAPTION: Rice University spinoff company Nano3D Biosciences uses magnetic levitation to grow three dimensional cell cultures. The technology uses inert, nontoxic nanoparticles and magnets to lift and suspend cells as they grow and divide.

CREDIT: Nano3D Biosciences

http://news.rice.edu/wp-content/uploads/2013/01/0128-LUNG-group-lg.jpg

CAPTION: Scientists from Rice University and the Rice spinoff company Nano3D Biosciences have used magnetic levitation to grow realistic lung tissue in vitro. From left are Glauco Souza, Jacob Gage, Tom Killian, Jane Grande-Allen and Hubert Tseng.

CREDIT: Jeff Fitlow/Rice University

A copy of the paper is available at: http://online.liebertpub.com/doi/abs/10.1089/ten.TEC.2012.0157

This release can be found online at news.rice.edu.

Follow Rice News and Media Relations via Twitter @RiceUNews

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,708 undergraduates and 2,374 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 2 for "best value" among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to http://tinyurl.com/AboutRice.

David Ruth | EurekAlert!
Further information:
http://www.rice.edu

More articles from Medical Engineering:

nachricht 3-D visualization of the pancreas -- new tool in diabetes research
15.03.2017 | Umea University

nachricht New PET radiotracer identifies inflammation in life-threatening atherosclerosis
02.03.2017 | Society of Nuclear Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>