Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Loyola study assesses use of fingerstick blood sample with i-STAT point-of-care device

24.09.2013
Blood samples still the gold standard

Researchers have determined that fingerstick cardiac troponin I assay testing using thepoint-of-care i-STAT device is not accurate enough to determine the exact troponin level without the application of a corrective term.

The study was funded by the Department of Emergency Medicine, Loyola University Medical Center and was published in the American Journal of Emergency Medicine.

The study was conducted by Devin Loewenstein, BS, Christine Stake, MA and Mark Cichon, DO of Loyola University Chicago, Department of Emergency Medicine.

"Cardiac tropnin assays commonly exceed one hour while point-of-care testing can be completed in minutes by basic life support personnel," said Cichon, who is chair of the Emergency Medicine Department at Loyola. "When patients present complaining of chest pain, time can be critical to achieving positive outcomes, so Loyola was very keen to test this timesaving process." Currently Loyola is the only academic medical center in Chicago to utilize the i-STAT device.

Conducted in the Loyola Level 1 Trauma Center emergency department from June to August 2011, fingerstick blood samples were collected from consenting patients for whom standard-of-care venipuncture POC troponin (POCT) testing had been ordered as part of their workup. Cardiac tropnin (cTnl) assays were performed using the i-STAT I device.

Eighty-nine cTnl levels were measured by both fingerstick and standard venipuncture. "While fingerstick testing was not accurate enough to solely determine the exact troponin level, it is accurate in qualifying tropnonin levels as negative, borderline or positive which is clinical information that may guide critical decision making," said Cichon, who is on the board of directors of the Illinois College of Emergency Physicians (ICEP).

Cichon has served as division director for Loyola Emergency Medicine for the past 16 years. He has instituted several innovative programs to improve care for critically ill patients, including the Heart Attack Rapid Response Team, Telemedicine Stroke Program, Sepsis Blood Infection Program and Hypothermia Program.

Since 1995, annual patient volumes in Loyola's emergency division have increased from 29,000 to 53,000 patients. Loyola receives some of the region's most critically ill and injured patients, and the severity level of emergency admissions is among the highest in the country. Problems seen include major injuries from accidents, high-risk obstetrics, unstable cardiac conditions, poisonings and severe childhood illnesses. The 27-bed emergency facility is one of the most advanced in the Midwest and contains specialty care sections for trauma, cardiac care and pediatrics.

Loyola University Health System's (Loyola) hospital is designated by the state of Illinois as a Level I Trauma Center for both adult and pediatric patients. Additionally, the American College of Surgeons (ACS) has verified the hospital's Level I Trauma Center status. Loyola is the only hospital in Illinois – and one of a select group nationwide – to earn this distinction. The division also has been recognized by groups such as The Joint Commission, the Commission on Accreditation of Medical Transport Systems, the American College of Surgeons for Trauma and the Illinois Department of Public Health for Trauma, Burns, Pediatric and Emergency departments.

Stasia Thompson | EurekAlert!
Further information:
http://www.lumc.edu

More articles from Medical Engineering:

nachricht Wireless power can drive tiny electronic devices in the GI tract
28.04.2017 | Brigham and Women's Hospital

nachricht Artificial intelligence may help diagnose tuberculosis in remote areas
25.04.2017 | Radiological Society of North America

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>