Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Loyola study assesses use of fingerstick blood sample with i-STAT point-of-care device

24.09.2013
Blood samples still the gold standard

Researchers have determined that fingerstick cardiac troponin I assay testing using thepoint-of-care i-STAT device is not accurate enough to determine the exact troponin level without the application of a corrective term.

The study was funded by the Department of Emergency Medicine, Loyola University Medical Center and was published in the American Journal of Emergency Medicine.

The study was conducted by Devin Loewenstein, BS, Christine Stake, MA and Mark Cichon, DO of Loyola University Chicago, Department of Emergency Medicine.

"Cardiac tropnin assays commonly exceed one hour while point-of-care testing can be completed in minutes by basic life support personnel," said Cichon, who is chair of the Emergency Medicine Department at Loyola. "When patients present complaining of chest pain, time can be critical to achieving positive outcomes, so Loyola was very keen to test this timesaving process." Currently Loyola is the only academic medical center in Chicago to utilize the i-STAT device.

Conducted in the Loyola Level 1 Trauma Center emergency department from June to August 2011, fingerstick blood samples were collected from consenting patients for whom standard-of-care venipuncture POC troponin (POCT) testing had been ordered as part of their workup. Cardiac tropnin (cTnl) assays were performed using the i-STAT I device.

Eighty-nine cTnl levels were measured by both fingerstick and standard venipuncture. "While fingerstick testing was not accurate enough to solely determine the exact troponin level, it is accurate in qualifying tropnonin levels as negative, borderline or positive which is clinical information that may guide critical decision making," said Cichon, who is on the board of directors of the Illinois College of Emergency Physicians (ICEP).

Cichon has served as division director for Loyola Emergency Medicine for the past 16 years. He has instituted several innovative programs to improve care for critically ill patients, including the Heart Attack Rapid Response Team, Telemedicine Stroke Program, Sepsis Blood Infection Program and Hypothermia Program.

Since 1995, annual patient volumes in Loyola's emergency division have increased from 29,000 to 53,000 patients. Loyola receives some of the region's most critically ill and injured patients, and the severity level of emergency admissions is among the highest in the country. Problems seen include major injuries from accidents, high-risk obstetrics, unstable cardiac conditions, poisonings and severe childhood illnesses. The 27-bed emergency facility is one of the most advanced in the Midwest and contains specialty care sections for trauma, cardiac care and pediatrics.

Loyola University Health System's (Loyola) hospital is designated by the state of Illinois as a Level I Trauma Center for both adult and pediatric patients. Additionally, the American College of Surgeons (ACS) has verified the hospital's Level I Trauma Center status. Loyola is the only hospital in Illinois – and one of a select group nationwide – to earn this distinction. The division also has been recognized by groups such as The Joint Commission, the Commission on Accreditation of Medical Transport Systems, the American College of Surgeons for Trauma and the Illinois Department of Public Health for Trauma, Burns, Pediatric and Emergency departments.

Stasia Thompson | EurekAlert!
Further information:
http://www.lumc.edu

More articles from Medical Engineering:

nachricht Visualizing gene expression with MRI
23.12.2016 | California Institute of Technology

nachricht Illuminating cancer: Researchers invent a pH threshold sensor to improve cancer surgery
21.12.2016 | UT Southwestern Medical Center

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>