Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New long-term antimicrobial catheter developed

04.09.2012
A novel antimicrobial catheter that remains infection-free for up to twelve weeks could dramatically improve the lives of long-term catheter users. The scientists who have developed the new technology are presenting their work at the Society for General Microbiology's Autumn Conference at the University of Warwick.

Researchers at the University of Nottingham have developed a catheter that can kill most urinary bacteria, including most strains of Proteus bacteria – the most common cause of catheter infections. Importantly the antimicrobial catheter retains its activity for between six to twelve weeks, making it suitable for long-term use, unlike existing commercial anti-infection catheters.

Urinary catheters are commonly used to manage incontinence in the elderly or individuals who have suffered long-term spinal cord injury. All catheters become infected after a couple of weeks and Proteus bacteria are responsible for up to 40% of these infections. The bacterium sticks to catheter surfaces and breaks down urea, causing the pH of urine to rise. This causes deposits of mineral crystals in the catheter which blocks it, preventing drainage. If unnoticed, catheter blockage can lead to kidney and bloodstream infections, which ultimately may result in potentially fatal septic shock.

This new antimicrobial catheter has significant advantages over existing solutions, explained Dr Roger Bayston who is leading the development. "Commercial 'anti-infection' catheters are active for only a few days and are not suitable for long-term use. There is an urgent need for an antimicrobial catheter that is suitable for long-term use. Our catheter uses patented technology that does not involve any coatings which extends its antimicrobial activity. The process involves introducing antimicrobial molecules into the catheter material after manufacture, so that they are evenly distributed throughout it, yet can move through the material to replenish those washed away from the surface."

There are 100 million catheter users worldwide whose lives can be severely disrupted by illness from repeat infections and side-effects from antibiotics. "The catheter technology has proven benefit in other medical settings and has the potential to be the solution to recurrent infections in long-term catheter users, which will improve quality of life of these individuals. In addition, reducing the need to frequently change catheters and treat infections would represent huge financial savings to the NHS," explained Dr Bayston.

Laura Udakis | EurekAlert!
Further information:
http://www.sgm.ac.uk

More articles from Medical Engineering:

nachricht Novel breast tomosynthesis technique reduces screening recall rate
21.02.2017 | Radiological Society of North America

nachricht Biocompatible 3-D tracking system has potential to improve robot-assisted surgery
17.02.2017 | Children's National Health System

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>