Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New long-term antimicrobial catheter developed

04.09.2012
A novel antimicrobial catheter that remains infection-free for up to twelve weeks could dramatically improve the lives of long-term catheter users. The scientists who have developed the new technology are presenting their work at the Society for General Microbiology's Autumn Conference at the University of Warwick.

Researchers at the University of Nottingham have developed a catheter that can kill most urinary bacteria, including most strains of Proteus bacteria – the most common cause of catheter infections. Importantly the antimicrobial catheter retains its activity for between six to twelve weeks, making it suitable for long-term use, unlike existing commercial anti-infection catheters.

Urinary catheters are commonly used to manage incontinence in the elderly or individuals who have suffered long-term spinal cord injury. All catheters become infected after a couple of weeks and Proteus bacteria are responsible for up to 40% of these infections. The bacterium sticks to catheter surfaces and breaks down urea, causing the pH of urine to rise. This causes deposits of mineral crystals in the catheter which blocks it, preventing drainage. If unnoticed, catheter blockage can lead to kidney and bloodstream infections, which ultimately may result in potentially fatal septic shock.

This new antimicrobial catheter has significant advantages over existing solutions, explained Dr Roger Bayston who is leading the development. "Commercial 'anti-infection' catheters are active for only a few days and are not suitable for long-term use. There is an urgent need for an antimicrobial catheter that is suitable for long-term use. Our catheter uses patented technology that does not involve any coatings which extends its antimicrobial activity. The process involves introducing antimicrobial molecules into the catheter material after manufacture, so that they are evenly distributed throughout it, yet can move through the material to replenish those washed away from the surface."

There are 100 million catheter users worldwide whose lives can be severely disrupted by illness from repeat infections and side-effects from antibiotics. "The catheter technology has proven benefit in other medical settings and has the potential to be the solution to recurrent infections in long-term catheter users, which will improve quality of life of these individuals. In addition, reducing the need to frequently change catheters and treat infections would represent huge financial savings to the NHS," explained Dr Bayston.

Laura Udakis | EurekAlert!
Further information:
http://www.sgm.ac.uk

More articles from Medical Engineering:

nachricht PET identifies which prostate cancer patients can benefit from salvage radiation treatment
05.12.2017 | Society of Nuclear Medicine and Molecular Imaging

nachricht Designing a golden nanopill
01.12.2017 | University of Texas at Austin, Texas Advanced Computing Center

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>