Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New long-term antimicrobial catheter developed

A novel antimicrobial catheter that remains infection-free for up to twelve weeks could dramatically improve the lives of long-term catheter users. The scientists who have developed the new technology are presenting their work at the Society for General Microbiology's Autumn Conference at the University of Warwick.

Researchers at the University of Nottingham have developed a catheter that can kill most urinary bacteria, including most strains of Proteus bacteria – the most common cause of catheter infections. Importantly the antimicrobial catheter retains its activity for between six to twelve weeks, making it suitable for long-term use, unlike existing commercial anti-infection catheters.

Urinary catheters are commonly used to manage incontinence in the elderly or individuals who have suffered long-term spinal cord injury. All catheters become infected after a couple of weeks and Proteus bacteria are responsible for up to 40% of these infections. The bacterium sticks to catheter surfaces and breaks down urea, causing the pH of urine to rise. This causes deposits of mineral crystals in the catheter which blocks it, preventing drainage. If unnoticed, catheter blockage can lead to kidney and bloodstream infections, which ultimately may result in potentially fatal septic shock.

This new antimicrobial catheter has significant advantages over existing solutions, explained Dr Roger Bayston who is leading the development. "Commercial 'anti-infection' catheters are active for only a few days and are not suitable for long-term use. There is an urgent need for an antimicrobial catheter that is suitable for long-term use. Our catheter uses patented technology that does not involve any coatings which extends its antimicrobial activity. The process involves introducing antimicrobial molecules into the catheter material after manufacture, so that they are evenly distributed throughout it, yet can move through the material to replenish those washed away from the surface."

There are 100 million catheter users worldwide whose lives can be severely disrupted by illness from repeat infections and side-effects from antibiotics. "The catheter technology has proven benefit in other medical settings and has the potential to be the solution to recurrent infections in long-term catheter users, which will improve quality of life of these individuals. In addition, reducing the need to frequently change catheters and treat infections would represent huge financial savings to the NHS," explained Dr Bayston.

Laura Udakis | EurekAlert!
Further information:

More articles from Medical Engineering:

nachricht Münster researchers make a fly’s heartbeat visible / Software automatically recognizes pulse
12.03.2018 | Westfälische Wilhelms-Universität Münster

nachricht 3-D-written model to provide better understanding of cancer spread
05.03.2018 | Purdue University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Taming chaos: Calculating probability in complex systems

21.03.2018 | Physics and Astronomy

Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

21.03.2018 | Physics and Astronomy

New 4-D printer could reshape the world we live in

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>