Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Life under the laser

29.08.2008
Researchers at The University of Nottingham have developed a unique technology that will allow scientists to look at microscopic activity within the body’s chemical messenger system for the very first time, live as it happens.

The cutting edge laser technology has helped to attract £1.3 million from the MRC (Medical Research Council) for a five-year project that will offer a new insight into the tiny world of activity taking place within single cells and could contribute to the design of new drugs to treat human diseases such as asthma and arthritis with fewer side effects.

The team, involving scientists from the University’s Schools of Biomedical Science (Professor Steve Hill and Dr Steve Briddon) and Pharmacy (Dr Barrie Kellam), is concentrating on a type of specialised docking site (receptor) on the surface of a cell that recognises and responds to a natural chemical within the body called adenosine.

These A3-adenosine receptors work within the body by binding with proteins to cause a response within cells and are found in very tiny and highly specialised area of a cell membrane called microdomains. Microdomains contain a collection of different molecules that are involved in telling the cell how to respond to drugs or hormones.

It is believed that these receptors play an important role in inflammation within the body and knowing more about how they operate could inform the future development of anti-inflammatory drugs that target just those receptors in the relevant microdomain of the cell, without influencing the same receptors in other areas of the cell. However, scientists have never before been able to look in detail at their activity within these tiny microscopic regions of a living cell.

The Nottingham researchers have solved this problem by creating novel drug molecules which have fluorescent labels attached. Using a cutting edge laser technology called fluorescence correlation spectroscopy, the fluorescent drug molecules can be detected as they glow under the laser beam of a highly sensitive microscope. This allows their binding to the receptor to be followed for the first time in real time at the single molecule level.

Leading the project, Professor Steve Hill in the School of Biomedical Sciences said: “These microdomains are so tiny you could fit five million on them on a full stop. There are 10,000 receptors on each cell, and we are able to follow how single drug molecules bind to individual receptors in these specialised microdomains.

“What makes this single molecule laser technique unique is that we are looking at them in real time on a living cell. Other techniques that investigate how drugs bind to their receptors require many millions of cells to get a big enough signal and this normally involves destroying the cells in the process”

The researchers will be using donated blood as a source of A3-receptors in specialised human blood cells (neutrophils) that have important roles during inflammation.

Different types of adenosine receptors are found all over the body and can exist in different areas of the cell membrane and have different properties. Scientists hope that eventually the new technology could also be used to unlock the secrets of the role they play in a whole host of human diseases.

The fluorescent molecules developed as part of the research project will also be useful in drug screening programmes and The University of Nottingham will be making these fluorescent drugs available to the wider scientific community through its links with its spin-out company CellAura Technologies Ltd.

Emma Thorne | alfa
Further information:
http://www.nottingham.ac.uk
http://communications.nottingham.ac.uk/News/Article/Life-under-the-laser.html

More articles from Medical Engineering:

nachricht UTSA study describes new minimally invasive device to treat cancer and other illnesses
02.12.2016 | University of Texas at San Antonio

nachricht Earlier Alzheimer's diagnosis may be possible with new imaging compound
02.11.2016 | Washington University School of Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>