Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel Laser Technique Reveals How the Inner Ear Amplifies Sound

13.12.2012
It has long been known that the inner ear actively amplifies sounds it receives, and that this amplification can be attributed to forces generated by outer hair cells in the cochlea.

How the ear actually accomplishes this, however, has remained somewhat of a mystery. Now, Jonathan A. N. Fisher, PhD, and colleagues at The Rockefeller University, in New York, describe how the cochlea actively self-amplifies sound it receives to help increase the range of sounds that can be heard.

The results of their research were published in the December 6, 2012 issue of Neuron.

Dr. Fisher received a grant for this research from the American Hearing Research Foundation in 2011. The AHRF is a non-profit, Chicago-based foundation that funds research into hearing loss.

Fisher and colleagues used a new optical technique that inactivates prestin, a motor protein involved in the movement of the outer hair cells. The outer hair cells are part of the hair cell bundles (which also include the inner hair cells)- the true sensory cells of the inner ear. The main body of the hair cells sits in the basilar membrane- the tissue that lines the interior of the bony cochlea. The “hair” part of these cells, called the stereocilia, sticks up into the fluid-filled space of the cochlea, where they are pushed by the fluid as sound waves travel through it.

The sound waves traveling down the cochlea produce actual waves that can be observed along the basilar membrane. The cochlea picks up different sound frequencies along its length, with higher frequency sounds picked up at center of the “snail” and the lower frequency sounds being picked up at the part of the cochlea closest to the eardrum.

The outer hair cells have been known to provide amplification of sound waves picked up by the inner hair cells by actively changing their shape to increase the amplitudes of the sound waves. These outer hair cells can do this because the membrane protein can contract and cause the stereocillia to be deflected by the overlying tectorial membrane.

Fisher and colleagues developed a light-sensitive drug that when illuminated by an ultraviolet laser can inactivate prestin in select locations within the cochlea. Using this novel technique, the researchers were able to affect prestin at very specific locations along the basilar membrane.

The researchers found that by inactivating prestin at very specific locations, the sound-evoked waves that carry mechanical signals to sensory hair cells were re-shaped and of smaller amplitude- indicating that without prestin, amplification is dampened compared to what the researchers saw when prestin was allowed to function normally.

Their findings reveal how prestin’s molecular forces pump energy into the waves within the cochlea, and how this energy is pushed forward as the wave travels. The research also demonstrates the importance of prestin in locally amplifying these sound evoked traveling waves.

Sharon Parmet | Newswise
Further information:
http://www.american-hearing.org

More articles from Medical Engineering:

nachricht Potentially life-saving health monitor technology designed by Sussex University physicists
10.01.2018 | University of Sussex

nachricht 2 million euros in funding for new MR-compatible electrophysiological brain implants
18.12.2017 | Max-Planck-Institut für biologische Kybernetik

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

White graphene makes ceramics multifunctional

16.01.2018 | Materials Sciences

Breaking bad metals with neutrons

16.01.2018 | Materials Sciences

ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records

16.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>