Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Johns Hopkins GI doctors use endoscopy to place transpyloric stent

04.07.2013
'Could play a big role' in gastroparesis treatment

Physicians at Johns Hopkins say they are encouraged by early results in three patients of their new treatment for gastroparesis, a condition marked by the failure of the stomach to properly empty its contents into the small intestine.

In an article published online today in the journal Endoscopy, they describe how the placement of a small metal stent in the stomach can improve life for people who suffer from severe bouts of nausea, abdominal pain and vomiting that accompany the condition.

John Clarke, M.D., assistant professor of medicine at the Johns Hopkins University School of Medicine, and the article's lead author, used an endoscope to place a pyloric stent in three patients with delayed gastric emptying. The pylorus is the part of the stomach that connects to the small bowel.

"I think this new technique could play a big role in the treatment of gastroparesis," says Clarke, who also is clinical director of the Johns Hopkins Center for Neurogastroenterology. "Though it sounds a little bit unconventional, the safety of it may be better than anything else we have out there."

Clarke says recently developed flexible, silicone-covered metal stents have already been approved to treat some gastrointestinal obstructions, but until now have not been used to treat gastroparesis.

Typically, patients with gastroparesis don't get a lot of good news from their physicians. Stomach surgery or risky medications such as erythromycin and metoclopramide have been the go-to treatments for the condition, which can have serious health and quality-of-life consequences.

"There are few FDA-approved options for gastroparesis patients," Clarke says. "The only medicines that are approved have a number of adverse effects associated with them."

The National Institutes of Health estimates that 5 million Americans live with gastroparesis, a condition in which the contents of the stomach empty into the intestine slowly or not at all. Symptoms, including reflux, become chronic.

Using an endoscope, Clarke placed a self-expandable, coated metallic stent across the three patients' pyloric channels, holding the channels open and allowing the patients' stomachs to empty normally.

All three patients showed dramatic reductions in symptoms, Clarke says. One was a 15-year-old boy with chronic nausea and vomiting who had endured unsuccessful trials of erythromycin, metoclopramide, domperidone and promethazine. A second was a 54-year-old man with idiopathic gastroparesis who also didn't respond to medication, but had complete recovery after his stent placement. In a third patient, the stent migrated out of place and her pain came back, but after replacing it, the pain eased, Clarke reports. All were treated at The Johns Hopkins Hospital.

Clarke says the stent placement procedure isn't difficult.

"Technically it's pretty simple, and the risk appears to be minimal; if it doesn't work, you just take it out," he says. "Gastric surgery to stimulate emptying is riskier than endoscopy."

The number of patients diagnosed with gastroparesis is on the rise, Clarke says. "I'd estimate that 30 percent of my clinical practice comprises patients with gastroparesis."

Clarke says a larger clinical trial, which he expects to begin in the near future, is needed to provide longer follow-up of results and to identify which patients are likely to benefit the most from stents. "Our hope is that stent placement may become either a primary treatment option or a bridge technology to determine who can best benefit from surgery to improve stomach emptying."

Johns Hopkins Medicine (JHM), headquartered in Baltimore, Maryland, is a $6.7 billion integrated global health enterprise and one of the leading health care systems in the United States. JHM unites physicians and scientists of the Johns Hopkins University School of Medicine with the organizations, health professionals and facilities of The Johns Hopkins Hospital and Health System. JHM's mission is to improve the health of the community and the world by setting the standard of excellence in medical education, research and clinical care. Diverse and inclusive, JHM educates medical students, scientists, health care professionals and the public; conducts biomedical research; and provides patient-centered medicine to prevent, diagnose and treat human illness. JHM operates six academic and community hospitals, four suburban health care and surgery centers, more than 38 primary health care outpatient sites and other businesses that care for national and international patients and activities. The Johns Hopkins Hospital, opened in 1889, was ranked number one in the nation for 21 years by U.S. News & World Report.

Johns Hopkins Medicine
Media Relations and Public Affairs
Media Contacts:
Patrick Smith
410-955-8242
psmith88@jhmi.edu
or
Helen Jones
410-502-9422
hjones49@jhmi.edu

Patrick Smith | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Medical Engineering:

nachricht Artificial intelligence may help diagnose tuberculosis in remote areas
25.04.2017 | Radiological Society of North America

nachricht Pharmacoscpy: Next-Generation Microscopy
25.04.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>