Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jefferson and Delaware Research Team to Create 3D Touch-and-Feel Genetic Images of Cancer

29.09.2009
A team of researchers from Thomas Jefferson University and the University of Delaware have received a grant from the Department of Defense to create a three-dimensional patient imaging system that will allow surgeons to view and touch selected organs and tissues prior to surgery.

The investigators will also design novel radiopharmaceuticals that will scan for gene activity of the disease and present the results in a realistic hologram-like display that can be touched and probed like genuine organs.

The two-year project is focused on the pancreas and pancreatic tumors, and has two aims: 1.) the molecular design of a single new imaging ligand for epidermal growth factor receptors, and 2.) the surgical simulation of human pancreatic cancer reconstructed from patient CT and PET scans.

Currently, the elements of surgery must be imagined by the surgeon from two-dimensional diagnostic images before an operation, according to Eric Wickstrom, Ph.D., professor of Biochemistry and Molecular Biology at Jefferson Medical College of Thomas Jefferson University. Three-dimensional holographic images will allow surgeons to see the lesion to be removed in the patient’s own anatomical environment and permit a “touch and feel” surgical strategy.

“This imaging system will provide a highly realistic environment in which to better understand an individual patient’s pathology, and to accurately plan and rehearse that patient’s operation,” said Wickstrom, the leader of the study. “This system will combine the 3D visual image with the sense of touch and permit surgeons to view, palpate and manipulate selected organs and tissues.”

“This state of the art procedure will significantly enhance our ability to evaluate new biomolecules for their eventual translation to improving surgical care of patients at Jefferson and beyond,” said Mathew Thakur, Ph.D., professor of Radiology and director of the Laboratories of Radiopharmaceutical Research and Molecular Imaging. Dr. Thakur is also part of the research team at Jefferson.

The Jefferson research team also includes Chang-Po Chen, Ph.D., from the department of Biochemistry and Molecular Biology; Devadhas Devakumar, Ph.D., from the department of Radiology; John Kairys, M.D., from the department of Surgery; and Martha Ankeny, M.Ed., director of Learning Resources. The Delaware team members include Karl Steiner, Ph.D., Kenneth Barner, Ph.D., and Rui Hu, all from the department of Electrical and Computer Engineering.

Emily Shafer | Newswise Science News
Further information:
http://www.jefferson.edu

More articles from Medical Engineering:

nachricht Visualizing gene expression with MRI
23.12.2016 | California Institute of Technology

nachricht Illuminating cancer: Researchers invent a pH threshold sensor to improve cancer surgery
21.12.2016 | UT Southwestern Medical Center

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>