Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jefferson and Delaware Research Team to Create 3D Touch-and-Feel Genetic Images of Cancer

29.09.2009
A team of researchers from Thomas Jefferson University and the University of Delaware have received a grant from the Department of Defense to create a three-dimensional patient imaging system that will allow surgeons to view and touch selected organs and tissues prior to surgery.

The investigators will also design novel radiopharmaceuticals that will scan for gene activity of the disease and present the results in a realistic hologram-like display that can be touched and probed like genuine organs.

The two-year project is focused on the pancreas and pancreatic tumors, and has two aims: 1.) the molecular design of a single new imaging ligand for epidermal growth factor receptors, and 2.) the surgical simulation of human pancreatic cancer reconstructed from patient CT and PET scans.

Currently, the elements of surgery must be imagined by the surgeon from two-dimensional diagnostic images before an operation, according to Eric Wickstrom, Ph.D., professor of Biochemistry and Molecular Biology at Jefferson Medical College of Thomas Jefferson University. Three-dimensional holographic images will allow surgeons to see the lesion to be removed in the patient’s own anatomical environment and permit a “touch and feel” surgical strategy.

“This imaging system will provide a highly realistic environment in which to better understand an individual patient’s pathology, and to accurately plan and rehearse that patient’s operation,” said Wickstrom, the leader of the study. “This system will combine the 3D visual image with the sense of touch and permit surgeons to view, palpate and manipulate selected organs and tissues.”

“This state of the art procedure will significantly enhance our ability to evaluate new biomolecules for their eventual translation to improving surgical care of patients at Jefferson and beyond,” said Mathew Thakur, Ph.D., professor of Radiology and director of the Laboratories of Radiopharmaceutical Research and Molecular Imaging. Dr. Thakur is also part of the research team at Jefferson.

The Jefferson research team also includes Chang-Po Chen, Ph.D., from the department of Biochemistry and Molecular Biology; Devadhas Devakumar, Ph.D., from the department of Radiology; John Kairys, M.D., from the department of Surgery; and Martha Ankeny, M.Ed., director of Learning Resources. The Delaware team members include Karl Steiner, Ph.D., Kenneth Barner, Ph.D., and Rui Hu, all from the department of Electrical and Computer Engineering.

Emily Shafer | Newswise Science News
Further information:
http://www.jefferson.edu

More articles from Medical Engineering:

nachricht A Challenging European Research Project to Develop New Tiny Microscopes
28.03.2017 | Technische Universität Braunschweig

nachricht 3-D visualization of the pancreas -- new tool in diabetes research
15.03.2017 | Umea University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>