Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Intermountain Medical Center reseachers develop new 3-D technology to treat atrial fibrillation

13.05.2013
New technology maps the electronic signals of the heart 3 dimensionally

Researchers at the Intermountain Heart Institute at Intermountain Medical Center have developed a new 3-D technology that for the first time allows cardiologists the ability to see the precise source of atrial fibrillation in the heart – a breakthrough for a condition that affects nearly three million Americans.

This new technology that maps the electronic signals of the heart three dimensionally significantly improves the chances of successfully eliminating the heart rhythm disorder with a catheter ablation procedure, according to a new study presented at the Heart Rhythm Society's National Scientific Sessions in Denver on Saturday, May 11, 2013.

Atrial fibrillation occurs when electronic signals misfire in the heart, causing an irregular, and often chaotic, heartbeat in the upper left atrium of the heart.

Symptoms of atrial fibrillation include irregular or rapid heartbeat, palpitations, lightheadedness, extreme fatigue, shortness of breath or chest pain. However, not all people with atrial fibrillation experience symptoms.

"Historically, more advanced forms of atrial fibrillation were treated by arbitrarily creating scar tissue in the upper chambers of the heart in hopes of channeling these chaotic electrical signals that were causing atrial fibrillation," said researcher John Day, MD, director of the heart rhythm specialists at the Intermountain Heart Institute at Intermountain Medical Center. "The beauty of this new technology is that it allows us for the first time to actually see three dimensionally the source of these chaotic electrical signals in the heart causing atrial fibrillation."

Previously, cardiologists were able to map the heart in 3-D to enhance navigation of catheters, but this is the first time that they've utilized 3-D imaging technology to map the heart's specific electronic signals. Armed with this information, cardiologists can now pinpoint exactly where the misfiring signals are coming from and then "zap" or ablate that specific area in the heart and dramatically improve success rates.

With this new technology, cardiologists will now be able to treat thousands of more patients who suffer from advanced forms of atrial fibrillation and were previously not felt to be good candidates for this procedure.

"The capabilities of the new technology can be compared to a symphony concert," said Jared Bunch, MD, medical director for electrophysiology research at the Intermountain Heart Institute at Intermountain Medical Center. "During the concert, you have many different instruments all playing different parts, much like the heart has many frequencies that drive the heartbeat. This novel technology allows us to pinpoint the melody of an individual instrument, display it on a 3-D map and direct the ablation process."

The research team used the new 3-D mapping technology on 49 patients between 2012 and 2013 and compared them with nearly 200 patients with similar conditions who received conventional treatment during that same time period.

About one year after catheter ablation, nearly 79% of patients who had the 3-D procedure were free of their atrial fibrillation, compared to only 47.4% of patients who underwent a standard ablation procedure alone without the 3-D method.

"This new technology allows us to find the needles in the haystack, and as we ablate these areas we typically see termination or slowing of atrial fibrillation in our patients," says Dr. Day.

All of the patients in the study had failed medications and 37 percent had received prior catheter ablations. The average age of study participants was 65.5 years old and 94 percent had persistent/chronic atrial fibrillation.

Previous research has shown that the incidence of atrial fibrillation increases with age. A report from the American Heart Association shows the median age for patients with atrial fibrillation is 66.8 years for men and 74.6 years for women.

If untreated, atrial fibrillation can lead to blood clots, stroke and heart failure. In fact, people with atrial fibrillation are five times more likely to have a stroke than people without the condition.

Intermountain Medical Center is the flagship facility for the renown Intermountain Healthcare system.

Jason Carlton | EurekAlert!
Further information:
http://www.imail.org

More articles from Medical Engineering:

nachricht Novel chip-based gene expression tool analyzes RNA quickly and accurately
18.01.2018 | University of Illinois College of Engineering

nachricht Potentially life-saving health monitor technology designed by Sussex University physicists
10.01.2018 | University of Sussex

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>