Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Intermountain Medical Center reseachers develop new 3-D technology to treat atrial fibrillation

13.05.2013
New technology maps the electronic signals of the heart 3 dimensionally

Researchers at the Intermountain Heart Institute at Intermountain Medical Center have developed a new 3-D technology that for the first time allows cardiologists the ability to see the precise source of atrial fibrillation in the heart – a breakthrough for a condition that affects nearly three million Americans.

This new technology that maps the electronic signals of the heart three dimensionally significantly improves the chances of successfully eliminating the heart rhythm disorder with a catheter ablation procedure, according to a new study presented at the Heart Rhythm Society's National Scientific Sessions in Denver on Saturday, May 11, 2013.

Atrial fibrillation occurs when electronic signals misfire in the heart, causing an irregular, and often chaotic, heartbeat in the upper left atrium of the heart.

Symptoms of atrial fibrillation include irregular or rapid heartbeat, palpitations, lightheadedness, extreme fatigue, shortness of breath or chest pain. However, not all people with atrial fibrillation experience symptoms.

"Historically, more advanced forms of atrial fibrillation were treated by arbitrarily creating scar tissue in the upper chambers of the heart in hopes of channeling these chaotic electrical signals that were causing atrial fibrillation," said researcher John Day, MD, director of the heart rhythm specialists at the Intermountain Heart Institute at Intermountain Medical Center. "The beauty of this new technology is that it allows us for the first time to actually see three dimensionally the source of these chaotic electrical signals in the heart causing atrial fibrillation."

Previously, cardiologists were able to map the heart in 3-D to enhance navigation of catheters, but this is the first time that they've utilized 3-D imaging technology to map the heart's specific electronic signals. Armed with this information, cardiologists can now pinpoint exactly where the misfiring signals are coming from and then "zap" or ablate that specific area in the heart and dramatically improve success rates.

With this new technology, cardiologists will now be able to treat thousands of more patients who suffer from advanced forms of atrial fibrillation and were previously not felt to be good candidates for this procedure.

"The capabilities of the new technology can be compared to a symphony concert," said Jared Bunch, MD, medical director for electrophysiology research at the Intermountain Heart Institute at Intermountain Medical Center. "During the concert, you have many different instruments all playing different parts, much like the heart has many frequencies that drive the heartbeat. This novel technology allows us to pinpoint the melody of an individual instrument, display it on a 3-D map and direct the ablation process."

The research team used the new 3-D mapping technology on 49 patients between 2012 and 2013 and compared them with nearly 200 patients with similar conditions who received conventional treatment during that same time period.

About one year after catheter ablation, nearly 79% of patients who had the 3-D procedure were free of their atrial fibrillation, compared to only 47.4% of patients who underwent a standard ablation procedure alone without the 3-D method.

"This new technology allows us to find the needles in the haystack, and as we ablate these areas we typically see termination or slowing of atrial fibrillation in our patients," says Dr. Day.

All of the patients in the study had failed medications and 37 percent had received prior catheter ablations. The average age of study participants was 65.5 years old and 94 percent had persistent/chronic atrial fibrillation.

Previous research has shown that the incidence of atrial fibrillation increases with age. A report from the American Heart Association shows the median age for patients with atrial fibrillation is 66.8 years for men and 74.6 years for women.

If untreated, atrial fibrillation can lead to blood clots, stroke and heart failure. In fact, people with atrial fibrillation are five times more likely to have a stroke than people without the condition.

Intermountain Medical Center is the flagship facility for the renown Intermountain Healthcare system.

Jason Carlton | EurekAlert!
Further information:
http://www.imail.org

More articles from Medical Engineering:

nachricht New imaging technique able to watch molecular dynamics of neurodegenerative diseases
14.07.2017 | The Optical Society

nachricht Quick test finds signs of sepsis in a single drop of blood
03.07.2017 | University of Illinois at Urbana-Champaign

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA flights gauge summer sea ice melt in the Arctic

25.07.2017 | Earth Sciences

Fungi that evolved to eat wood offer new biomass conversion tool

25.07.2017 | Life Sciences

New map may lead to drug development for complex brain disorders, USC researcher says

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>