Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

‘Intelligent’ materials to revolutionise surgical implants

04.12.2008
nanotechnology will provide superior implants for orthopaedic patients

A brand new process that could revolutionise the reliability and durability of surgical implants, such as hip and knee replacements, has today , 2 December 08, received recognition for its medical and commercial potential by achieving one of the world’s most sought after accolades.

A team of researchers, led by the Science and Technology Facilities Council (STFC), has received a Medical Futures Innovation Award for its high technology process designed to coat surgical implants with fibres that, for the first time, will encourage the implant to ‘bond’ with living bone and to last the lifetime of the patient.

This unique surface engineering process is being developed at the Micro-Nano Technology Centre (MNTC) at STFC. In collaboration with the Electrospinning Company Ltd (TECL) and Anglia Ruskin University, the concept will be taken forward under the guidance of a Medical Futures team, and eventually exclusively licensed to TECL, a spin out company of STFC.

This advanced nanotechnology technique builds on an existing technique known as electrospinning, and will utilise a vastly superior electrospinning source to create bespoke fibrous materials. Electrospinning is a process that uses an electrical charge to turn polymers into extremely thin fibres that are ‘spun’ to form a mat of fine fibres. It is seen as a platform technology for the medical sector with a wide range of applications including tissue regeneration and drug delivery. The MNTC has developed systems to increase the production rate of nanofibres which has been previously prevented this technology from being adopted by industry.

In this case, nanosized hair- like structures, a thousand times thinner than the width of a human hair, are electrospun at MNTC and added to the surface of an orthopaedic implant to create a ‘living interface’ between the artificial implants and living bone. Not only does this improve the performance of the implants it also significantly increases their durability to last the lifetime of the patient. Any stress on the implant is relieved, making it more reliable and durable. Additionally, it is also possible to add a unique biological coating that can facilitate growth and improve the bonding of healthy tissue to the implant, primarily benefitting patients with osteoarthritis in the aging population and sports injuries in the younger population.

This process will be transferred to UK industry and TECL will provide access to state-of-the-art electrospinning systems. TECL has spun out from STFC to provide open access to electrospinning equipments and expertise to organisations that would like to explore the technique’s potential. The main benefit is that this can be done without commercial companies committing to capital investment or developing in-house expertise until the potential value of electrospinning to the organisation is fully understood. TECL is based both at the Daresbury Science and Innovation Campus in Cheshire and at STFC’s Rutherford Appleton Laboratory in Oxfordshire, and was founded by CLIK, the wholly-owned technology exploitation company of STFC. TECL’s specialised facilities are designed to extend current electrospinning capabilities so that nanofibres can be reproduced in volume.

Dr Robert Stevens, Head of the MNTC at STFC said: “This award provides a major step forward for the future of patients requiring surgical implants and I am thrilled that this concept was selected as an award winner over several hundred entries. Our award is given for translational research innovation to meet the current and future orthopaedic needs of patients.”

Mansel Williams, Chief Executive of The Electrospinning Company said: “Ten percent of patients receiving surgical implants go on to develop infection and loosening of their implants, costing the UK at least £14 million every year, £224 million globally. We want to eliminate this by creating the ideal implant surface matched to the individual patient, benefitting both the patient and the economy. This award will now allow us to scale up the testing and commercialisation of these implants”

The Medical Futures Innovation Awards, which were announced at the Medical Futures Innovators Gallery in London, are one of the UK’s most highly coveted medical awards, rewarding ground-breaking innovation from front line clinicians and scientists with ideas that have the potential to transform peoples' lives and demonstrate the UK's position as a world beater.

Wendy Taylor MCIPR | alfa
Further information:
http://www.stfc.ac.uk

More articles from Medical Engineering:

nachricht Penn first in world to treat patient with new radiation technology
22.09.2017 | University of Pennsylvania School of Medicine

nachricht Skin patch dissolves 'love handles' in mice
18.09.2017 | Columbia University Medical Center

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

25.09.2017 | Trade Fair News

Highest-energy cosmic rays have extragalactic origin

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>