Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

‘Intelligent’ materials to revolutionise surgical implants

04.12.2008
nanotechnology will provide superior implants for orthopaedic patients

A brand new process that could revolutionise the reliability and durability of surgical implants, such as hip and knee replacements, has today , 2 December 08, received recognition for its medical and commercial potential by achieving one of the world’s most sought after accolades.

A team of researchers, led by the Science and Technology Facilities Council (STFC), has received a Medical Futures Innovation Award for its high technology process designed to coat surgical implants with fibres that, for the first time, will encourage the implant to ‘bond’ with living bone and to last the lifetime of the patient.

This unique surface engineering process is being developed at the Micro-Nano Technology Centre (MNTC) at STFC. In collaboration with the Electrospinning Company Ltd (TECL) and Anglia Ruskin University, the concept will be taken forward under the guidance of a Medical Futures team, and eventually exclusively licensed to TECL, a spin out company of STFC.

This advanced nanotechnology technique builds on an existing technique known as electrospinning, and will utilise a vastly superior electrospinning source to create bespoke fibrous materials. Electrospinning is a process that uses an electrical charge to turn polymers into extremely thin fibres that are ‘spun’ to form a mat of fine fibres. It is seen as a platform technology for the medical sector with a wide range of applications including tissue regeneration and drug delivery. The MNTC has developed systems to increase the production rate of nanofibres which has been previously prevented this technology from being adopted by industry.

In this case, nanosized hair- like structures, a thousand times thinner than the width of a human hair, are electrospun at MNTC and added to the surface of an orthopaedic implant to create a ‘living interface’ between the artificial implants and living bone. Not only does this improve the performance of the implants it also significantly increases their durability to last the lifetime of the patient. Any stress on the implant is relieved, making it more reliable and durable. Additionally, it is also possible to add a unique biological coating that can facilitate growth and improve the bonding of healthy tissue to the implant, primarily benefitting patients with osteoarthritis in the aging population and sports injuries in the younger population.

This process will be transferred to UK industry and TECL will provide access to state-of-the-art electrospinning systems. TECL has spun out from STFC to provide open access to electrospinning equipments and expertise to organisations that would like to explore the technique’s potential. The main benefit is that this can be done without commercial companies committing to capital investment or developing in-house expertise until the potential value of electrospinning to the organisation is fully understood. TECL is based both at the Daresbury Science and Innovation Campus in Cheshire and at STFC’s Rutherford Appleton Laboratory in Oxfordshire, and was founded by CLIK, the wholly-owned technology exploitation company of STFC. TECL’s specialised facilities are designed to extend current electrospinning capabilities so that nanofibres can be reproduced in volume.

Dr Robert Stevens, Head of the MNTC at STFC said: “This award provides a major step forward for the future of patients requiring surgical implants and I am thrilled that this concept was selected as an award winner over several hundred entries. Our award is given for translational research innovation to meet the current and future orthopaedic needs of patients.”

Mansel Williams, Chief Executive of The Electrospinning Company said: “Ten percent of patients receiving surgical implants go on to develop infection and loosening of their implants, costing the UK at least £14 million every year, £224 million globally. We want to eliminate this by creating the ideal implant surface matched to the individual patient, benefitting both the patient and the economy. This award will now allow us to scale up the testing and commercialisation of these implants”

The Medical Futures Innovation Awards, which were announced at the Medical Futures Innovators Gallery in London, are one of the UK’s most highly coveted medical awards, rewarding ground-breaking innovation from front line clinicians and scientists with ideas that have the potential to transform peoples' lives and demonstrate the UK's position as a world beater.

Wendy Taylor MCIPR | alfa
Further information:
http://www.stfc.ac.uk

More articles from Medical Engineering:

nachricht First transcatheter implant for diastolic heart failure successful
16.11.2017 | The Ohio State University Wexner Medical Center

nachricht Theranostic nanoparticles for tracking and monitoring disease state
13.11.2017 | SLAS (Society for Laboratory Automation and Screening)

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>