Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New instrument helps researchers see how diseases start and develop in minute detail

Researchers at Lund University can now study molecules which are normally only found in very small concentrations, directly in organs and tissue.

After several years of work, researchers in Lund have managed to construct an instrument that ‘hyperpolarises’ the molecules and thus makes it possible to track them using MRI. The technology opens up new possibilities to study what really happens on molecular level in organs such as the brain.

Magnetic resonance imaging (MRI) is an established technique which over the years has made it possible for researchers and healthcare professionals to study biological phenomena in the body without using ionising radiation, for example X-rays.

The images produced by normal MRI are, to put it simply, pictures of water in the body, since the body is largely made up of water. MRI produces images of the hydrogen nuclei in water molecules. It can also be used to study other types of nuclei in many other interesting molecules. The only problem is that the concentration of molecules that are interesting to track is so low that they are not visible on a normal MRI scan. It is this problem that the researchers have now solved by constructing a ‘polariser’.

In the polariser, the researchers make these molecules visible to the MRI scanner by hyperpolarising them. The molecules are then injected into their natural body tissue.

“Then we can follow the specific molecule and see the reactions in which it is involved. This gives us a unique opportunity to see and measure enzymatic reactions directly in the living tissue”, explains Professor Deniz Kirik.

The technology could be used to study molecules in many different types of tissue in the body. Deniz Kirik, who is a Professor of Neuroscience, will focus on developing this technology to study the brain – something which has not been done before.

“The brain is not an easy target!” he observes. “When we look inside the brain today using MRI, we see the molecules that are most numerous. However, it is rarely these common molecules we want to study. We want to study how molecules that have a low concentration in the tissue behave, for example how signal substances are produced, used and broken down. It is when these processes don’t work that we become ill.

“This technology has the potential to help us do just that. If we can make it work, it will be a breakthrough not only for neuroscience but also for other research fields such as diabetes, cancer and inflammation, where similar obstacles limit our understanding of the basic molecular processes which lead to disease.”

Professor Hindrik Mulder is one of the co-applicants for the project and he will develop and use the technology in diabetes research. Dr Vladimir Denisov from the Lund University Bioimaging Centre is leading the technical development within the project.

At present there are only a few polarisers in the world and Lund’s newly built device is the only one in Scandinavia to be fully available for academic research.

“All the other equivalent instruments are purchased commercially and come with restrictions placed by the manufacturer. We therefore chose to take the longer and more complicated route of building the instrument ourselves”, explains a pleased and proud Deniz Kirik.

Now that the instrument has become operational, the researchers have started on the first experiments.

“This is the first of two steps”, says Deniz Kirik. “The next step in this frontline research is to develop the unique technology by constructing an even more sophisticated polariser which will enable advanced experiments on animal models for various diseases.”

The project has been made possible through a grant from the Swedish Research Council and earlier grants from the Swedish Foundation for Strategic Research.

Contact: Deniz Kirik, +46 46 222 05 64, +46 733 82 25 86,

Megan Grindlay | idw
Further information:

More articles from Medical Engineering:

nachricht Münster researchers make a fly’s heartbeat visible / Software automatically recognizes pulse
12.03.2018 | Westfälische Wilhelms-Universität Münster

nachricht 3-D-written model to provide better understanding of cancer spread
05.03.2018 | Purdue University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>