Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Innovative Tomographic Imaging Process

Scanning Laser Optical Tomography (SLOT) is a fast method which can be used for imaging biological tissue or complete organs in a high 3-D resolution.

The Laser Zentrum Hannover e.V. (LZH) has filed a patent application for a SLOT process, which was originally developed as a 3-D fluorescence process for quickly scanning larger samples. SLOT, which can be viewed as the optical equivalent to computer tomography, works with isotropic resolution, that is, with the same resolution in all three spatial planes.

Data of a murine lung. Left: Transmission image (photo-diode). Middle: Autofluorescence image (photo multiplier tube). Right: Superposition of both signals (red: PD, green: PMT). (Scale 500 µm)

It simultaneously records transmissive, scattered and fluorescent light. Samples can thus be imaged with a 3-D resolution of at least 1/1000 of the object size, in a short time. The goal of the current project is further development of this promising technology, so that an imaging speed of 20 seconds for 600 individual projections can be reached.

SLOT has several advantages over optical projection tomography: Apart from homogeneous lighting with a 300 times higher photon exploitation and a high signal-to-noise ratio of 10-90 dB, ring artefacts and speckles can be avoided, due to one-dimensional detection. Furthermore, the process can be also be used with intrinsic (absorption, scattering, auto-fluorescence) and extrinsic (fluorescence and absorption marker) contrast mechanisms.

Based on intrinsic contrast processes, high resolution, ex vivo volumetric images could be made, for example of locust heads and mouse lungs. By using absorption and auto-fluorescent imaging, the researchers at the LZH could image lung structures down to the resolution of a single alveola.

Further, SLOT can be used to determine objects on non-transparent sample surfaces. In 2012, the three-dimensional visualization of bacteria growth on the surface of dental implants was possible, including images of the in vitro development of the micro-organisms. As fluorescent staining was not necessary, these images were given a fourth dimension.

The technical basis for this process uses detection of the scattered laser light from living bio-films, or correspondingly the wavelength-dependent absorption of metabolism markers such as 2,3,5- Triphenyltetrazoliumchloride (TTC), which are implemented and enriched in the metabolically active bacteria cells in 1,3,5 Triphenylformazan (TPF).

Currently, various investigations on establishing this new imaging process are being carried out in close cooperation with the University of Veterinary Medicine Hannover and the Hannover Medical School. Scientists in the Biophotonic Imaging and Manipulation Group at the LZH are working together with industrial partners to establish SLOT as a fully-automated tomographic module, the so-called Laser-Scanning Tomographic Module (LSTM)., Built into an existing confocal and 2-photon microscope, this unit could be used to monitor the fluctuation of NAD/NADH, cAMP or calcium ions, or for the analysis of the intra- and extracellular accumulation of micro- and nanoparticles in cell aggregates. LSTM is also a promising, innovative technology for non-invasive, temporally and spatially resolved investigations on artificial tissue, which is subsequently subject to in vitro investigations.

The development of LSTM is financially supported by the German Federal Ministry of Economics and Technology (BMWi) within the Framework of the Central Innovation Program SME (ZIM). Besides the LZH, project partners are the companies LaVision BioTec GmbH and Scivis wissenschaftliche Bildverarbeitung GmbH.

Laser Zentrum Hannover e.V.
Michael Botts
Hollerithallee 8
D-30419 Hannover, Germany
Tel.: +49 511 2788-151
Fax: +49 511 2788-100

The Laser Zentrum Hannover e.V. (LZH) carries out research and development in the field of laser technology and is supported by the Ministry of Economic Affairs, Labour and Transport of the State of Lower Saxony (Niedersächsisches Ministerium für Wirtschaft, Arbeit und Verkehr).

Michael Botts | Laser Zentrum Hannover e.V.
Further information:

More articles from Medical Engineering:

nachricht Münster researchers make a fly’s heartbeat visible / Software automatically recognizes pulse
12.03.2018 | Westfälische Wilhelms-Universität Münster

nachricht 3-D-written model to provide better understanding of cancer spread
05.03.2018 | Purdue University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>