Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Innovative Tomographic Imaging Process

04.04.2013
Scanning Laser Optical Tomography (SLOT) is a fast method which can be used for imaging biological tissue or complete organs in a high 3-D resolution.

The Laser Zentrum Hannover e.V. (LZH) has filed a patent application for a SLOT process, which was originally developed as a 3-D fluorescence process for quickly scanning larger samples. SLOT, which can be viewed as the optical equivalent to computer tomography, works with isotropic resolution, that is, with the same resolution in all three spatial planes.


Data of a murine lung. Left: Transmission image (photo-diode). Middle: Autofluorescence image (photo multiplier tube). Right: Superposition of both signals (red: PD, green: PMT). (Scale 500 µm)

It simultaneously records transmissive, scattered and fluorescent light. Samples can thus be imaged with a 3-D resolution of at least 1/1000 of the object size, in a short time. The goal of the current project is further development of this promising technology, so that an imaging speed of 20 seconds for 600 individual projections can be reached.

SLOT has several advantages over optical projection tomography: Apart from homogeneous lighting with a 300 times higher photon exploitation and a high signal-to-noise ratio of 10-90 dB, ring artefacts and speckles can be avoided, due to one-dimensional detection. Furthermore, the process can be also be used with intrinsic (absorption, scattering, auto-fluorescence) and extrinsic (fluorescence and absorption marker) contrast mechanisms.

Based on intrinsic contrast processes, high resolution, ex vivo volumetric images could be made, for example of locust heads and mouse lungs. By using absorption and auto-fluorescent imaging, the researchers at the LZH could image lung structures down to the resolution of a single alveola.

Further, SLOT can be used to determine objects on non-transparent sample surfaces. In 2012, the three-dimensional visualization of bacteria growth on the surface of dental implants was possible, including images of the in vitro development of the micro-organisms. As fluorescent staining was not necessary, these images were given a fourth dimension.

The technical basis for this process uses detection of the scattered laser light from living bio-films, or correspondingly the wavelength-dependent absorption of metabolism markers such as 2,3,5- Triphenyltetrazoliumchloride (TTC), which are implemented and enriched in the metabolically active bacteria cells in 1,3,5 Triphenylformazan (TPF).

Currently, various investigations on establishing this new imaging process are being carried out in close cooperation with the University of Veterinary Medicine Hannover and the Hannover Medical School. Scientists in the Biophotonic Imaging and Manipulation Group at the LZH are working together with industrial partners to establish SLOT as a fully-automated tomographic module, the so-called Laser-Scanning Tomographic Module (LSTM)., Built into an existing confocal and 2-photon microscope, this unit could be used to monitor the fluctuation of NAD/NADH, cAMP or calcium ions, or for the analysis of the intra- and extracellular accumulation of micro- and nanoparticles in cell aggregates. LSTM is also a promising, innovative technology for non-invasive, temporally and spatially resolved investigations on artificial tissue, which is subsequently subject to in vitro investigations.

The development of LSTM is financially supported by the German Federal Ministry of Economics and Technology (BMWi) within the Framework of the Central Innovation Program SME (ZIM). Besides the LZH, project partners are the companies LaVision BioTec GmbH and Scivis wissenschaftliche Bildverarbeitung GmbH.

Contact:
Laser Zentrum Hannover e.V.
Michael Botts
Hollerithallee 8
D-30419 Hannover, Germany
Tel.: +49 511 2788-151
Fax: +49 511 2788-100
E-Mail: m.botts@lzh.de

The Laser Zentrum Hannover e.V. (LZH) carries out research and development in the field of laser technology and is supported by the Ministry of Economic Affairs, Labour and Transport of the State of Lower Saxony (Niedersächsisches Ministerium für Wirtschaft, Arbeit und Verkehr).

Michael Botts | Laser Zentrum Hannover e.V.
Further information:
http://www.lzh.de

More articles from Medical Engineering:

nachricht Novel PET tracer identifies most bacterial infections
06.10.2017 | Society of Nuclear Medicine and Molecular Imaging

nachricht Teleoperating robots with virtual reality
05.10.2017 | Massachusetts Institute of Technology, CSAIL

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>