Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Near-infrared imaging system shows promise as future pancreatic cancer diagnostic tool

18.08.2011
A team of researchers from four Boston-area institutions led by Nicusor Iftimia from Physical Sciences, Inc. has demonstrated for the first time that optical coherence tomography (OCT), a high resolution optical imaging technique that works by bouncing near-infrared laser light off biological tissue, can reliably distinguish between pancreatic cysts that are low-risk and high-risk for becoming malignant. Other optical techniques often fail to provide images that are clear enough for doctors to differentiate between the two types.

To test the diagnostic potential of OCT imaging, researchers used the technique to examine surgically removed pancreatic tissue samples from patients with cystic lesions. By identifying unique features of the high-risk cysts that appeared in the OCT scans, the team developed a set of visual criteria to differentiate between high and low risk cysts.

They then tested the criteria by comparing OCT diagnoses to those obtained by examining thin slices of the pancreatic tissue under a microscope. Their results, described in the August issue of the Optical Society's (OSA) open-access journal Biomedical Optics Express, showed that OCT allowed clinicians to reliably differentiate between low-risk and high-risk cysts with a success rate close to that achieved by microscope-assisted examinations of slices of the same samples.

Future studies by the research team will focus on improving imaging resolution to further differentiate between solid lesions and autoimmune pancreatitis, and test this technology in vivo. They recently received FDA approval for testing this technology in human patients by using an OCT probe small enough to be inserted into the pancreas through a biopsy needle, which will be guided into suspect masses in the pancreas by endoscopic ultrasound imaging. A pilot clinical study is planned to start within the next couple of months. If in vivo data will prove reliable differentiation between the two types of cysts, a study in a larger number of patients will be planned, contingent on NIH funding and FDA approval.

Paper: "Differentiation of pancreatic cysts with optical coherence tomography (OCT) imaging: an ex-vivo pilot study," Biomedical Optics Express, Iftimia et al., Vol. 2, Issue 8, pp. 2372-2382. http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-2-8-2372

EDITOR'S NOTE: This summary is part of OSA's monthly Biomedical Optics Express tip sheet. To subscribe, email astark@osa.org or follow @OpticalSociety on Twitter. For images or interviews with authors, please contact Angela Stark, astark@osa.org or 202.416.1443.

About Biomedical Optics Express

Biomedical Optics Express is OSA's principal outlet for serving the biomedical optics community with rapid, open-access, peer-reviewed papers related to optics, photonics and imaging in the life sciences. The journal scope encompasses theoretical modeling and simulations, technology development, and biomedical studies and clinical applications. It is published by the Optical Society and edited by Joseph A. Izatt of Duke University. Biomedical Optics Express is an open-access journal and is available at no cost to readers online at http://www.OpticsInfoBase.org/BOE.

About OSA

Uniting more than 106,000 professionals from 134 countries, the Optical Society (OSA) brings together the global optics community through its programs and initiatives. Since 1916 OSA has worked to advance the common interests of the field, providing educational resources to the scientists, engineers and business leaders who work in the field by promoting the science of light and the advanced technologies made possible by optics and photonics. OSA publications, events, technical groups and programs foster optics knowledge and scientific collaboration among all those with an interest in optics and photonics.

Angela Stark | EurekAlert!
Further information:
http://www.osa.org
http://www.OpticsInfoBase.org/BOE

More articles from Medical Engineering:

nachricht 3-D visualization of the pancreas -- new tool in diabetes research
15.03.2017 | Umea University

nachricht New PET radiotracer identifies inflammation in life-threatening atherosclerosis
02.03.2017 | Society of Nuclear Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>