Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Implantable, Wireless Sensors Share Secrets of Healing Tissues

23.02.2012
Engineering Researchers at Rensselaer Polytechnic Institute Create Smart Sensor To Help Personalize Medicine by Wirelessly Transmitting Data From Orthopedic Surgery Site

A new implantable sensor developed at Rensselaer Polytechnic Institute can wirelessly transmit data from the site of a recent orthopedic surgery. Inexpensive to make and highly reliable, this new sensor holds the promise of more accurate, more cost-effective, and less invasive post-surgery monitoring and diagnosis.


Rensselaer/Ledet
A new implantable sensor developed at Rensselaer Polytechnic Institute can wirelessly transmit data from the site of a recent orthopedic surgery. Inexpensive to make and highly reliable, this new sensor holds the promise of more accurate, more cost-effective, and less invasive post-surgery monitoring and diagnosis.

Following an orthopedic procedure, surgeons usually rely on X-rays or MRIs to monitor the progress of their patient’s recovery. The new sensors, created by Rensselaer faculty researcher Eric Ledet, would instead give surgeons detailed, real-time information from the actual surgery site. This in vivo data could lead to more accurate assessments of a patient’s recovery, or provide better insight into potential complications.

The wireless sensor measures only 4 millimeters in diameter and 500 microns thick. It needs no battery, no external power, and requires no electronics within the body. Instead, the sensor is powered by the external device used to capture the sensor data.

“Our new sensor will give surgeons the opportunity to make personalized, highly detailed, and very objective diagnoses for individual patients,” said Ledet, assistant professor in the Department of Biomedical Engineering at Rensselaer. “The simplicity of the sensor is its greatest strength. The sensor is inexpensive to produce, requires no external power source, yet it is robust and durable. We are very excited about the potential of this new technology.”

The sensors look like small coils of wire and are attached to commonly used orthopedic musculoskeletal implants such as rods, plates, or prostheses. Once implanted in the in vivo environment, the sensor can monitor and transmit data about the load, strain, pressure, or temperature of the healing surgery site. The sensor is scalable, tunable, and easy to configure so that it may be incorporated into many different types of implantable orthopedic devices.

One key benefit of this new technology is the possibility of more accurate assessments by physicians for when recovering patients are able to return to work without a risk of further injury.

“Having a stream of real-time in vivo data should take some of the approximation and subjectivity out of declaring a patient recovered and ready to return to work,” Ledet said.

Ledet and his research team have filed for patent protection for their new sensor. They currently make each sensor by hand, but are investigating methods for mass production. Ledet has been working on this sensor technology for about five years, and has presented his progress at several conferences. His most recent presentation was earlier this month in San Francisco at the Orthopaedic Research Society (ORS) 2012 Annual Meeting.

Ledet, who earned his master’s and doctoral degrees from Rensselaer in 1995 and 2003, conducted this research in collaboration with colleagues at Albany Medical College. Ledet’s co-investigator on this project is Dr. Richard Uhl, who earned his bachelor’s degree from Rensselaer and is head of the Division of Orthopedic Surgery at Albany Medical College.

For additional information on Ledet’s research at Rensselaer, visit:

• Faculty Home Page
http://www.eng.rpi.edu/soe/index.php/faculty/154?soeid=ledete
• Rensselaer Engineering Students To Visit South Africa and Help Innovate New Solutions to Unique Medical Challenges

http://news.rpi.edu/update.do?artcenterkey=2964

Michael Mullaney | Newswise Science News
Further information:
http://www.rpi.edu

More articles from Medical Engineering:

nachricht New imaging technique able to watch molecular dynamics of neurodegenerative diseases
14.07.2017 | The Optical Society

nachricht Quick test finds signs of sepsis in a single drop of blood
03.07.2017 | University of Illinois at Urbana-Champaign

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>