Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Implantable Monitor May Help in Managing Diastolic Heart Failure

11.12.2008
An implantable hemodynamic monitor (IHM) may help to guide medical treatment in a large subgroup of patients with heart failure—those with diastolic heart failure (DHF), reports a study in the December Journal of Cardiac Failure (http://www.onlinejcf.com/), published by Elsevier.

Led by Michael R. Zile, M.D., of Medical University of South Carolina, Charleston, the researchers analyzed data on DHF patients enrolled in a larger randomized trial evaluating the IHM for heart failure.

The IHM is a surgically implanted device that continuously records data on heart function and other key variables. The data can then be downloaded for analysis by health care professionals, who can use it to make adjustments in medical therapy. The goal is to avoid sudden drops in heart function, called acute decompensation.

The main "COMPASS-HF" study included 274 patients with all types of heart failure. The original results showed that the risk of heart failure events was reduced by about 20 percent in patients treated with the IHM, although the difference was not statistically significant.

The new analysis focused on the subgroup of patients with DHF. In DHF, the heart still has normal pumping function (ejection fraction), but no longer relaxes sufficiently to fill with blood normally. In the COMPASS-HF study, 70 patients with DHF were randomly assigned to receive the IHM, while the rest were managed without the IHM.

As in the main study, DHF patients who received the IHM device had a 20 percent reduction in heart failure events, although the difference was not significant. A 29 percent reduction in the risk of hospitalization for heart failure was also nonsignificant.

The IHM did lead to some significant changes in patient management, including more frequent adjustments in the dose of diuretics—a key part of treatment for heart failure. As in the larger study, the IHM device was safe in DHF patients, with a low complication rate.

Patients with chronic heart failure need careful medical management to avoid episodes of acute decompensation. Few studies have focused on patients with DHF, even though they account for about half of all patients with heart failure.

Based on the new analysis, there is as yet no evidence that using the IHM device to guide treatment reduces the risk of decompensation and heart failure events in patients with DHF. The IHM does appear safe for patients with heart failure, with a very low risk of complications. In addition, DHF patients receiving the IHM device show a trend toward lower rates of heart failure events, including hospitalization related to heart failure.

"This is very important study and the trends make sense," comments Barry M. Massie, M.D., Editor-in-Chief of Journal of Cardiac Failure. "Worsening of HF leading to hospitalization, usually as a result of pulmonary congestion and rising blood pressure, is often more abrupt in patients with preserved ejection fraction. Hemodynamic monitoring may provide an early clue and facilitate relatively simple and effective interventions."

Maureen Hunter | alfa
Further information:
http://www.onlinejcf.com
http://www.elsevier.com

More articles from Medical Engineering:

nachricht 3-D visualization of the pancreas -- new tool in diabetes research
15.03.2017 | Umea University

nachricht New PET radiotracer identifies inflammation in life-threatening atherosclerosis
02.03.2017 | Society of Nuclear Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>