Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New imaging technology reveals prevalence of 'silent' heart attacks

22.04.2009
So-called "silent" heart attacks may be much more common than previously believed, according to researchers at Duke University Medical Center.

Studies show that each year, nearly 200,000 people in the U.S suffer a heart attack but may not realize it. These "silent" heart attacks aren't noted because they don't cause any pain – or at least any pain that patients believe is related to their heart – and they don't leave behind any telltale irregularities on electrocardiograms (ECGs).

New imaging research from Duke University Medical Center appearing in PLoS Medicine suggests that these heart attacks (now called unrecognized myocardial infarctions, or UMIs) may be happening much more frequently than physicians had suspected. Duke investigators also found that these attacks were associated with a surprisingly high risk of untimely death.

"No one has fully understood how often these heart attacks occur and what they mean, in terms of prognosis," says Han Kim, M.D., a cardiologist at Duke and the lead author of the study. "With this study, we can now say that this subset of heart attacks, known as non-Q wave UMIs, is fairly common, at least among people with suspected coronary artery disease."

Physicians can usually tell when a heart attack has recently occurred by signature changes on ECGs and in certain blood enzyme levels. But if a heart attack happened in the distant past, physicians rely on the appearance of a specific alteration on an ECG called a Q-wave, which signals the presence of damaged tissue.

"The problem is, not all UMIs result in Q-waves on the electrocardiogram. Those that don't are called non-Q-wave myocardial infarctions. Those are the ones we haven't been able to count because we've never had a good way to document them," says Kim.

Kim believed that using delayed enhancement cardiovascular magnetic resonance, or DE-CMR, might be good way to get an idea about how frequently non-Q-wave myocardial infarctions occur. Previous studies had shown that DE-CMR was particularly adept in discerning damaged tissue from healthy tissue.

Researchers used DE-CMR to examine185 patients suspected of having coronary artery disease but who had no record of any heart attacks. All of them were scheduled to undergo angiography to find out if excess plaque had narrowed or blocked any of their arteries. Investigators followed the patients for two years to see if the presence of any unrecognized non-Q-wave heart attacks were associated with a higher risk of death.

They found that 35 percent of the patients had evidence of a heart attack and that non-Q-wave attacks were three times more common than Q-wave UMIs. Non-Q-wave attacks were also more common among those with more severe coronary artery disease. In addition, researchers discovered that those who suffered non-Q-wave UMIs had an 11-fold higher risk of death from any cause and a 17-fold higher risk of death due to heart problems, when compared to patients who did not have any heart damage.

"Right now, there are no specific guidelines about how patients with UMIs should be treated," says Kim. "If patients with UMIs happen to be identified, they are usually treated similarly to those patients where heart disease has already been documented. Future studies will likely examine how common unrecognized non-Q-wave heart attacks are in other patient groups and how these UMIs should be treated."

The National Institutes of Health supported the study.

Duke researchers who contributed to the study include Igor Klem, Dipan Shah, Michele Parker, Anna Lisa Crowley, Robert Judd and senior author Raymond J. Kim. Additional co-authors include Edwin Wu, Sheridan Meyers and Robert Bonow, from the Feinberg Cardiovascular Research Institute at Northwestern University.

Drs. Judd and Raymond Kim are named on a U.S. patent for DE-CMR technology, which is owned by Northwestern University. Raymond Kim and Han Kim are not related.

Michelle Gailiun | EurekAlert!
Further information:
http://www.duke.edu

More articles from Medical Engineering:

nachricht Penn first in world to treat patient with new radiation technology
22.09.2017 | University of Pennsylvania School of Medicine

nachricht Skin patch dissolves 'love handles' in mice
18.09.2017 | Columbia University Medical Center

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>