Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New imaging technology reveals prevalence of 'silent' heart attacks

22.04.2009
So-called "silent" heart attacks may be much more common than previously believed, according to researchers at Duke University Medical Center.

Studies show that each year, nearly 200,000 people in the U.S suffer a heart attack but may not realize it. These "silent" heart attacks aren't noted because they don't cause any pain – or at least any pain that patients believe is related to their heart – and they don't leave behind any telltale irregularities on electrocardiograms (ECGs).

New imaging research from Duke University Medical Center appearing in PLoS Medicine suggests that these heart attacks (now called unrecognized myocardial infarctions, or UMIs) may be happening much more frequently than physicians had suspected. Duke investigators also found that these attacks were associated with a surprisingly high risk of untimely death.

"No one has fully understood how often these heart attacks occur and what they mean, in terms of prognosis," says Han Kim, M.D., a cardiologist at Duke and the lead author of the study. "With this study, we can now say that this subset of heart attacks, known as non-Q wave UMIs, is fairly common, at least among people with suspected coronary artery disease."

Physicians can usually tell when a heart attack has recently occurred by signature changes on ECGs and in certain blood enzyme levels. But if a heart attack happened in the distant past, physicians rely on the appearance of a specific alteration on an ECG called a Q-wave, which signals the presence of damaged tissue.

"The problem is, not all UMIs result in Q-waves on the electrocardiogram. Those that don't are called non-Q-wave myocardial infarctions. Those are the ones we haven't been able to count because we've never had a good way to document them," says Kim.

Kim believed that using delayed enhancement cardiovascular magnetic resonance, or DE-CMR, might be good way to get an idea about how frequently non-Q-wave myocardial infarctions occur. Previous studies had shown that DE-CMR was particularly adept in discerning damaged tissue from healthy tissue.

Researchers used DE-CMR to examine185 patients suspected of having coronary artery disease but who had no record of any heart attacks. All of them were scheduled to undergo angiography to find out if excess plaque had narrowed or blocked any of their arteries. Investigators followed the patients for two years to see if the presence of any unrecognized non-Q-wave heart attacks were associated with a higher risk of death.

They found that 35 percent of the patients had evidence of a heart attack and that non-Q-wave attacks were three times more common than Q-wave UMIs. Non-Q-wave attacks were also more common among those with more severe coronary artery disease. In addition, researchers discovered that those who suffered non-Q-wave UMIs had an 11-fold higher risk of death from any cause and a 17-fold higher risk of death due to heart problems, when compared to patients who did not have any heart damage.

"Right now, there are no specific guidelines about how patients with UMIs should be treated," says Kim. "If patients with UMIs happen to be identified, they are usually treated similarly to those patients where heart disease has already been documented. Future studies will likely examine how common unrecognized non-Q-wave heart attacks are in other patient groups and how these UMIs should be treated."

The National Institutes of Health supported the study.

Duke researchers who contributed to the study include Igor Klem, Dipan Shah, Michele Parker, Anna Lisa Crowley, Robert Judd and senior author Raymond J. Kim. Additional co-authors include Edwin Wu, Sheridan Meyers and Robert Bonow, from the Feinberg Cardiovascular Research Institute at Northwestern University.

Drs. Judd and Raymond Kim are named on a U.S. patent for DE-CMR technology, which is owned by Northwestern University. Raymond Kim and Han Kim are not related.

Michelle Gailiun | EurekAlert!
Further information:
http://www.duke.edu

More articles from Medical Engineering:

nachricht XXL computed tomography: a new dimension in X-ray analysis
17.05.2018 | Fraunhofer-Gesellschaft

nachricht Why we need erasable MRI scans
26.04.2018 | California Institute of Technology

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>