Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New imaging technique reveals structural changes in Tourette's

13.05.2009
Magnetization Transfer Imaging, MTI, has been used to visualize previously unknown alterations in the cerebral architecture of patients with Tourette's syndrome. The researchers, writing in the open access journal BMC Neuroscience, also found a correlation between the extent of some of the structural changes and symptom severity.

Kirsten Müller-Vahl, from Hanover Medical School, led a team of researchers who used normal MRI scanning and the new MTI technique to investigate the brains of 19 Tourette's patients and 20 controls.

They identified alterations in the frontal lobe of the Tourette's group that they suggest may be responsible for the pathology of the syndrome. Müller-Vahl said, "Our in vivo findings, using two sensitive and unbiased techniques, support the hypothesis that alterations in frontostriatal circuitries underlie Tourette's pathology".

The MTI technique used by the researchers has never before been applied to the study of Tourette's. It is a refinement of the nuclear magnetic resonance technique and allows for the detection of changes invisible to conventional MRI scanners. Tissue alterations in comparison to controls were detected in brain areas involved in the selection, programming, initiation, and control of movement. The authors conclude, "We suggest that Tourette's is primarily caused by a dysfunction in prefrontal cortex areas rather than the basal ganglia, as has been previously thought".

Tourette's syndrome is estimated to affect between 1-10 children per 1000 and, although the severity of a person's tics tends to decline with age, as many as 1% of the adult population may have some form of tic disorder. Symptoms include various facial, phonic and other motor tics - the well-known propensity for 'un-voluntary' swearing is in fact relatively uncommon, only affecting about 10% of Tourette's patients.

Graeme Baldwin | EurekAlert!
Further information:
http://www.biomedcentral.com

More articles from Medical Engineering:

nachricht Medical gamma-ray camera is now palm-sized
23.05.2017 | Waseda University

nachricht Computer accurately identifies and delineates breast cancers on digital tissue slides
11.05.2017 | Case Western Reserve University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>