Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New imaging technique reveals structural changes in Tourette's

13.05.2009
Magnetization Transfer Imaging, MTI, has been used to visualize previously unknown alterations in the cerebral architecture of patients with Tourette's syndrome. The researchers, writing in the open access journal BMC Neuroscience, also found a correlation between the extent of some of the structural changes and symptom severity.

Kirsten Müller-Vahl, from Hanover Medical School, led a team of researchers who used normal MRI scanning and the new MTI technique to investigate the brains of 19 Tourette's patients and 20 controls.

They identified alterations in the frontal lobe of the Tourette's group that they suggest may be responsible for the pathology of the syndrome. Müller-Vahl said, "Our in vivo findings, using two sensitive and unbiased techniques, support the hypothesis that alterations in frontostriatal circuitries underlie Tourette's pathology".

The MTI technique used by the researchers has never before been applied to the study of Tourette's. It is a refinement of the nuclear magnetic resonance technique and allows for the detection of changes invisible to conventional MRI scanners. Tissue alterations in comparison to controls were detected in brain areas involved in the selection, programming, initiation, and control of movement. The authors conclude, "We suggest that Tourette's is primarily caused by a dysfunction in prefrontal cortex areas rather than the basal ganglia, as has been previously thought".

Tourette's syndrome is estimated to affect between 1-10 children per 1000 and, although the severity of a person's tics tends to decline with age, as many as 1% of the adult population may have some form of tic disorder. Symptoms include various facial, phonic and other motor tics - the well-known propensity for 'un-voluntary' swearing is in fact relatively uncommon, only affecting about 10% of Tourette's patients.

Graeme Baldwin | EurekAlert!
Further information:
http://www.biomedcentral.com

More articles from Medical Engineering:

nachricht Novel breast tomosynthesis technique reduces screening recall rate
21.02.2017 | Radiological Society of North America

nachricht Biocompatible 3-D tracking system has potential to improve robot-assisted surgery
17.02.2017 | Children's National Health System

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>