Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New imaging technique reveals structural changes in Tourette's

Magnetization Transfer Imaging, MTI, has been used to visualize previously unknown alterations in the cerebral architecture of patients with Tourette's syndrome. The researchers, writing in the open access journal BMC Neuroscience, also found a correlation between the extent of some of the structural changes and symptom severity.

Kirsten Müller-Vahl, from Hanover Medical School, led a team of researchers who used normal MRI scanning and the new MTI technique to investigate the brains of 19 Tourette's patients and 20 controls.

They identified alterations in the frontal lobe of the Tourette's group that they suggest may be responsible for the pathology of the syndrome. Müller-Vahl said, "Our in vivo findings, using two sensitive and unbiased techniques, support the hypothesis that alterations in frontostriatal circuitries underlie Tourette's pathology".

The MTI technique used by the researchers has never before been applied to the study of Tourette's. It is a refinement of the nuclear magnetic resonance technique and allows for the detection of changes invisible to conventional MRI scanners. Tissue alterations in comparison to controls were detected in brain areas involved in the selection, programming, initiation, and control of movement. The authors conclude, "We suggest that Tourette's is primarily caused by a dysfunction in prefrontal cortex areas rather than the basal ganglia, as has been previously thought".

Tourette's syndrome is estimated to affect between 1-10 children per 1000 and, although the severity of a person's tics tends to decline with age, as many as 1% of the adult population may have some form of tic disorder. Symptoms include various facial, phonic and other motor tics - the well-known propensity for 'un-voluntary' swearing is in fact relatively uncommon, only affecting about 10% of Tourette's patients.

Graeme Baldwin | EurekAlert!
Further information:

More articles from Medical Engineering:

nachricht Gentle sensors for diagnosing brain disorders
29.09.2016 | King Abdullah University of Science and Technology

nachricht New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development
28.09.2016 | Lund University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>