Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel imaging technique may reduce lymphedema in breast cancer patients

13.12.2010
With guidance from a specialized scan, radiation oncologists at Mayo Clinic (http://www.mayoclinic.org/) were able to reduce by 55 percent the number of lymph nodes critical for removing fluid from the arm that received damaging radiation doses.

VIDEO ALERT: Additional audio and video resources, including excerpts from an interview with Dr. Andrea Cheville and other researchers presenting at San Antonio Breast Cancer Symposium, are available on the Mayo Clinic News Blog (http://newsblog.mayoclinic.org/2010/12/06/lymphedema-study/). These materials also are subject to embargo, but may be accessed in advance by journalists for incorporation into stories. The password is sanantonio1.

The researchers report that integrating single photon emission computed tomography (SPECT) with the computerized tomography (CT) scans utilized for breast cancer radiotherapy planning may offer patients substantial protection against lymphedema, an incurable, chronic swelling of tissue that results from damage to lymph nodes sustained during breast cancer radiation. The SPECT-CT scan pinpoints the precise locations of the lymph nodes that are critical for removing fluid from the arm, allowing physicians to block them, as much as possible, from X-ray beams delivered to the chest.

These findings were presented at the 33rd Annual CTRC-AACR San Antonio Breast Cancer Symposium.

"In an effort to deliver therapeutic doses of radiation to the breast, lymph nodes under the arm are innocent bystanders that often are irrevocably harmed. Minimizing harm to these nodes during breast cancer treatment is the most effective way we have seen to reduce women's risk of developing lymphedema," says the study's lead investigator, Andrea Cheville, M.D., a consultant in Physical Medicine and Rehabilitation at Mayo Clinic in Rochester, Minn. (http://www.mayoclinic.org/rochester/), who specializes in lymphedema management.

"Lymphedema is a critical concern of breast cancer survivors, so developing a more individualized approach to irradiation is greatly needed," she adds.

This ongoing prospective cohort study includes 30 women with early-stage, low-risk breast cancer who had completed surgery to remove tumors and were scheduled for radiotherapy to the affected breast. These patients either had no lymph nodes that were known to be positive (meaning the cancer had not spread to these sites), or had only micrometastasis to lymph nodes. Thus, radiation to the lymph nodes in the armpit was not warranted in these patients.

The technique the researchers developed to shield lymph nodes from radiation involved merging SPECT scans with the CT images utilized in radiation treatment planning.

"We can know exactly where the critical lymph nodes are under the armpit," Dr. Cheville says, adding that critical nodes are the ones that drain the arm. "While a person can have as many as 62 lymph nodes under the arm, only a few are responsible for that function."

"We can use this information to personalize the fields of radiation such that the tumor bed in the breast is therapeutically treated while the lymph nodes that drain the arm are maximally blocked from radiation and thereby spared," she says.

The researchers created two treatment plans for each patient -- a standard plan and one adapted for lymph node sparing based on the SPECT-CT scans. When they compared lymph node radiation between the plans, they noted dramatic reductions in radiation to critical lymph nodes in the SPECT-CT-adapted plans.

Using the SPECT-CT images, the researchers identified all of the critical lymph nodes in the patients. They found that 65 percent of these nodes would have been located within the standard radiation treatment fields if they were not blocked.

They also found that among the 25 patients with at least one critical lymph node within the radiation treatment field, at least some blocking was possible for all of them. Researchers calculated that the number of lymph nodes receiving a moderate dose of radiation was reduced from 26 percent to 4 percent with blocking.

Because lymphedema development can take a matter of years, the researchers will continue to monitor these patients. No cases of lymphedema have yet been reported.

Dr. Cheville says that the technique of locating critical lymph nodes and blocking them from radiation may prove most useful for patients who require surgical removal of the lymph nodes in the armpit but do not require radiation targeting any remaining nodes. These patients' risk of developing lymphedema may be as high as 50 percent without blocking, and measures that preserve the function of their lymphatic systems may be critical to their long-term quality of life, she says.

The study was funded by the Department of Defense's Congressionally Directed Medical Research Program.

About Mayo Clinic

Mayo Clinic is a non-profit worldwide leader in medical care, research and education for people from all walks of life. For more information, visit www.mayoclinic.org/about/ and www.mayoclinic.org/news.

Nicole Engler | EurekAlert!
Further information:
http://www.mayo.edu

More articles from Medical Engineering:

nachricht New imaging technique able to watch molecular dynamics of neurodegenerative diseases
14.07.2017 | The Optical Society

nachricht Quick test finds signs of sepsis in a single drop of blood
03.07.2017 | University of Illinois at Urbana-Champaign

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>