Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New Imaging Technique Could Help Physicians Ease the Aftermath of Breast Cancer

Lasers Illuminate Women's Health in inaugural open-access journal Biomedical Optics Express

A new study of breast cancer survivors may help physicians ease a common side effect of cancer treatments. The collaborative research by Eva Sevick, Ph.D., Director of the Center for Molecular Imaging at the University of Texas Health Science Center in Houston (UTHSC), and Caroline Fife, M.D., Director of the Memorial Herman Wound Care Clinic at UTHSC, could bring relief to millions.

Their paper appears in the inaugural issue of Biomedical Optics Express, an online, open-access journal published by the Optical Society (OSA). The papers featured in the journal will encompass theoretical modeling and simulations, technology development, biomedical studies and clinical applications.

A substantial number of breast cancer survivors suffer from lymphedema in the aftermath of their cancer surgeries. In lymphedema, fluids accumulate in the arms, potentially causing disfiguring and debilitating swelling that can impact quality of life.

Treatments vary, but they generally consist of using manual and pneumatic therapies to "push" or stimulate the body to remove excess fluid and reduce tissue swelling. Finding out whether a treatment is working can take months. That's because the current method of assessing progress is to measure the circumference or volume of a limb and check for changes in swelling -- and a size change big enough to be measured takes time.

During this time, the condition might improve – or it might worsen.

The UTHSC research team has developed what promises to be a more sensitive and more immediate way to monitor the effectiveness of a treatment. Their new near-infrared fluorescence imaging technique examines the root cause of lymphedema: blockages or damages in the lymphatic system that prevent fluid from circulating through the body and cause it to pool in the limbs.

"The lymphatics are like the sewer system of your body," says Sevick. "If they get all plugged up, then there’s a flood."

Nine women – six with lymphedema and three controls – were injected with a near-infrared fluorescent dye that has been used safely for 50 years at much higher dosages. The dye is taken up by the lymphatic system. When tissue surfaces are exposed to a dim, near-infrared laser – harmless to the human body – the dye within fluoresces, revealing its transit through the lymphatic system.

"This is the only method that can directly check for improvements in lymphatic function in one sitting, before and after a treatment," says Sevick.

Physicians have several treatment options for controlling lymphedema. They may use compression bandages and massage limbs to manually encourage fluids to drain from the arm. Pneumatic compression devices, sleeves made of segmented chambers that inflate and squeeze, may provide a similar benefit at home, but they may not always be covered by Medicare reimbursements because of lacking direct evidence of their benefit.

"The problem is that there has been no good way to measure direct evidence of benefit," says Sevick. "Hopefully we can use near-infrared fluorescence imaging technique to show improved lymphatic function from these treatments."

The NIR fluorescence technique detected statistically significant improvements in fluid flow through the lymphatic system immediately after the use of pneumatic compression devices. A larger follow-up study will be needed to confirm the results of this pilot study, says Sevick.

The research was funded by the National Institutes of Health and by Tactile Systems Technology, Inc., which manufactures and markets the Flexitouch pneumatic compression devices tested in this research.

The paper "Direct evidence of lymphatic function improvement after advanced pneumatic compression device treatment of lymphedema" by Kristen E. Adams et al. can be accessed at:

About OSA

Uniting more than 106,000 professionals from 134 countries, the Optical Society (OSA) brings together the global optics community through its programs and initiatives. Since 1916 OSA has worked to advance the common interests of the field, providing educational resources to the scientists, engineers and business leaders who work in the field by promoting the science of light and the advanced technologies made possible by optics and photonics. OSA publications, events, technical groups and programs foster optics knowledge and scientific collaboration among all those with an interest in optics and photonics.

Lyndsay Basista | EurekAlert!
Further information:

More articles from Medical Engineering:

nachricht Gentle sensors for diagnosing brain disorders
29.09.2016 | King Abdullah University of Science and Technology

nachricht New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development
28.09.2016 | Lund University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>