Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

IK4 develops a portable device for detecting Salmonella in under an hour

22.01.2009
IK4 Technological Alliance has designed a low-cost, rapid diagnostic device for detecting the presence of Salmonella spp. and other bacteria in less than one hour, a much shorter time than current systems. Unlike others, this project used clinical samples directly, without prior treatment in a laboratory.

The new diagnostic device is effectively a miniature conventional laboratory inside a chip (Lab on a Chip). Moreover, it is highly specific, rapid, portable and user-friendly.

In this way, an ample range of possible users -hospitals, health centres and the food industry, amongst others – have available a device equipped with an optical reading system (fluorescence signal emitted during Polymerase Chain Reaction (PCR) reaction in real time), that enables the rapid identification of pathogens. Within the Chip the system integrates the concentrating of the sample, the rupture of its membrane, the enzymatic multiplication of its DNA and finally identification of the pathogen. The user only has to insert two syringes into the device and the analysis is undertaken automatically.

This research is within the remit of the European OPTOLABCARD project, launched in September 2005 and now about to finish. The project is led by Ikerlan-IK4 and financed by the VI Framework Programme, with an overall budget of 2.9 million euros, and involving the participation of a total of 9 different bodies – DTU-Nano, the Hospital de Donosti through the BIOEF Foundation and Gaiker-IK4 itself, amongst them – and from 6 different countries (Germany, Austria, Denmark, Spain, Poland and Sweden).

Gaiker-IK4’s participation in the project has focused on the adaptation of biochemical developments to the microfluid system of the chip, as well as the optimisation and characterisation of the device for its clinical application and its diagnosis for the presence of Salmonella spp. in persons with colitis. Ikerlan-IK4 has also worked on the development of manufacturing technology for the production of the Laboratory on a Chip. This advance will enable the development of a great variety of new devices in the future.

The OPTOLABCARD project is currently in its final stage, having developed and patented exclusive technology for Micromanufacture and Molecular Diagnosis. The convergence of these two technologies together with the biological results mentioned corroborate the healthy position of IK4 Technological Alliance and is a great opportunity for the development of various and future laboratories miniaturised on a Chip.

Applications of the new device
Although there are many possible applications for the new device, research in this project has focused on two applications differentiated by the type of samples and the pathogen for detection: the detection of campylobacteriosis in farm animals (animal health application) and the identification of salmonellosis amongst persons (human health application). The final stage of the project involved the validation of the device for these types of samples.

One of the great advantages of this device is the rapidity of the whole process of analysis, including the concentrating and preparation of the sample and the detection of pathogens by PCR, in comparison to the procedures habitually employed in laboratories of reference. Likewise, the device’s easy-to-use handling and portability will enable a diagnostic analysis in the doctor’s surgery itself.

Oihane Lakar Iraizoz | alfa
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Berri_Kod=2040&hizk=I

More articles from Medical Engineering:

nachricht Novel breast tomosynthesis technique reduces screening recall rate
21.02.2017 | Radiological Society of North America

nachricht Biocompatible 3-D tracking system has potential to improve robot-assisted surgery
17.02.2017 | Children's National Health System

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>