Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


IK4 develops a portable device for detecting Salmonella in under an hour

IK4 Technological Alliance has designed a low-cost, rapid diagnostic device for detecting the presence of Salmonella spp. and other bacteria in less than one hour, a much shorter time than current systems. Unlike others, this project used clinical samples directly, without prior treatment in a laboratory.

The new diagnostic device is effectively a miniature conventional laboratory inside a chip (Lab on a Chip). Moreover, it is highly specific, rapid, portable and user-friendly.

In this way, an ample range of possible users -hospitals, health centres and the food industry, amongst others – have available a device equipped with an optical reading system (fluorescence signal emitted during Polymerase Chain Reaction (PCR) reaction in real time), that enables the rapid identification of pathogens. Within the Chip the system integrates the concentrating of the sample, the rupture of its membrane, the enzymatic multiplication of its DNA and finally identification of the pathogen. The user only has to insert two syringes into the device and the analysis is undertaken automatically.

This research is within the remit of the European OPTOLABCARD project, launched in September 2005 and now about to finish. The project is led by Ikerlan-IK4 and financed by the VI Framework Programme, with an overall budget of 2.9 million euros, and involving the participation of a total of 9 different bodies – DTU-Nano, the Hospital de Donosti through the BIOEF Foundation and Gaiker-IK4 itself, amongst them – and from 6 different countries (Germany, Austria, Denmark, Spain, Poland and Sweden).

Gaiker-IK4’s participation in the project has focused on the adaptation of biochemical developments to the microfluid system of the chip, as well as the optimisation and characterisation of the device for its clinical application and its diagnosis for the presence of Salmonella spp. in persons with colitis. Ikerlan-IK4 has also worked on the development of manufacturing technology for the production of the Laboratory on a Chip. This advance will enable the development of a great variety of new devices in the future.

The OPTOLABCARD project is currently in its final stage, having developed and patented exclusive technology for Micromanufacture and Molecular Diagnosis. The convergence of these two technologies together with the biological results mentioned corroborate the healthy position of IK4 Technological Alliance and is a great opportunity for the development of various and future laboratories miniaturised on a Chip.

Applications of the new device
Although there are many possible applications for the new device, research in this project has focused on two applications differentiated by the type of samples and the pathogen for detection: the detection of campylobacteriosis in farm animals (animal health application) and the identification of salmonellosis amongst persons (human health application). The final stage of the project involved the validation of the device for these types of samples.

One of the great advantages of this device is the rapidity of the whole process of analysis, including the concentrating and preparation of the sample and the detection of pathogens by PCR, in comparison to the procedures habitually employed in laboratories of reference. Likewise, the device’s easy-to-use handling and portability will enable a diagnostic analysis in the doctor’s surgery itself.

Oihane Lakar Iraizoz | alfa
Further information:

More articles from Medical Engineering:

nachricht Gentle sensors for diagnosing brain disorders
29.09.2016 | King Abdullah University of Science and Technology

nachricht New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development
28.09.2016 | Lund University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>