Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New hybrid imaging device shows promise in spotting hard-to-detect ovarian cancer

14.09.2011
By combining three previously unrelated imaging tools into one new device, a team of researchers from the University of Connecticut and the University of Southern California has proposed a new way to diagnose early-stage ovarian cancer in high-risk women through minimally invasive surgery. The new technique may be better than the current standard procedure of preemptively removing the ovaries.

Ovarian cancer has a low survival rate because a lack of reliable screening techniques usually means the disease remains hidden until the later stages. Now researchers have drawn on the unique advantages of multiple imaging tools to test a new way of spotting early-on the tissue irregularities that signal cancer.

For their diagnostic device, the researchers combined the contrast provided by photoacoustic imaging, the high-resolution subsurface imaging provided by optical coherence tomography, and the deeper tissue imaging provided by pulse-echo ultrasound. They tested their device, described by the team in the September issue of the Optical Society's (OSA) open-access journal Biomedical Optics Express, by imaging both pig and human ovarian tissue, and correctly identified malignant tumors that were later confirmed by staining the tissue and examining it under a microscope. These initial tests were performed on tissue that had been surgically removed, but the diameter of the device – at only 5 mm – is small enough that it could potentially be inserted through a small slit to image tissue in live patients.

Paper: "Integrated optical coherence tomography, ultrasound and photoacoustic imaging for ovarian tissue characterization," Yang et al., Biomedical Optics Express, Volume 2, Issue 9, pp. 2551-2561. http://www.opticsinfobase.org/boe/abstract.cfm?uri=boe-2-9-2551

EDITOR'S NOTE: This summary is part of OSA's monthly Biomedical Optics Express tip sheet. To subscribe, email astark@osa.org or follow @OpticalSociety on Twitter. For images or interviews with authors, please contact Angela Stark, astark@osa.org or 202.416.1443.

About Biomedical Optics Express

Biomedical Optics Express is OSA's principal outlet for serving the biomedical optics community with rapid, open-access, peer-reviewed papers related to optics, photonics and imaging in the life sciences. The journal scope encompasses theoretical modeling and simulations, technology development, and biomedical studies and clinical applications. It is published by the Optical Society and edited by Joseph A. Izatt of Duke University. Biomedical Optics Express is an open-access journal and is available at no cost to readers online at http://www.OpticsInfoBase.org/BOE.

About OSA

Uniting more than 106,000 professionals from 134 countries, the Optical Society (OSA) brings together the global optics community through its programs and initiatives. Since 1916 OSA has worked to advance the common interests of the field, providing educational resources to the scientists, engineers and business leaders who work in the field by promoting the science of light and the advanced technologies made possible by optics and photonics. OSA publications, events, technical groups and programs foster optics knowledge and scientific collaboration among all those with an interest in optics and photonics. For more information, visit http://www.osa.org.

Angela Stark | EurekAlert!
Further information:
http://www.osa.org

More articles from Medical Engineering:

nachricht Medical gamma-ray camera is now palm-sized
23.05.2017 | Waseda University

nachricht Computer accurately identifies and delineates breast cancers on digital tissue slides
11.05.2017 | Case Western Reserve University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>