Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The hunt for mirror neurons – not every technique picks them up

19.02.2013
Researchers in Tübingen have been studying how mirror neurons, which are assumed to be key to the understanding of behaviour, respond when the same action is repeatedly observed.
They found answers in the cerebral cortex of monkeys. The study, published in the journal Nature Communications, has a surprising result: the mirror neuron system does not adapt. This contradicts the original assumption of researchers, that mirror neurons – the same as other nerve cells – react to the frequent repetition of a particular stimulus through a reduced level of activity (adaptation.)

The results of the study highlight the importance of finding a new interpretation of neuroimaging studies that have so far shown that mirror neurons adapt. Astonishingly, these studies had shown adaptation. Researchers at the Hertie Institute for Clinical Brain Research (HIH) and the Werner Reichardt Centre for Integrative Neuroscience at the University of Tübingen have found an explanation for these apparently contradictory results.

Mirror Neurons Respond to Goal-Directed Behaviours
As with other nerve cells, it is possible to stimulate mirror neurons, which can transmit this stimulation on to other nerve cells. This happens with the help of electrical impulses, which ‘fire’ up to several hundred times a second. This ‘firing’ can be measured by an electrode. Researchers had previously discovered that mirror neurons control hand movements that are directed towards a particular goal, for instance grasping a piece of apple. Yet what is special about mirror neurons is that they are similarly active when these kinds of goal-directed actions are merely observed. Hence they might play a decisive role in comprehending the behaviour of other people.

Unexpected Pattern of Activity Baffles researchers
‘Surprisingly, it was shown that two thirds of mirror neurons did not adapt their firing patterns, as had previously been assumed’, says Pomper, a scientist at the Hertie Institute for Clinical Brain Research (HIH). Studies carried out with functional Magnetic Resonance Imaging (fMRI) had shown the opposite: the mirror neurons adapted, that is they reacted more and more weakly to the repetition of the same stimulus.
Not Every Approach is Able to Measure
The activity measured by fMRI is only able to record the ‘firing’ of nerve cells indirectly. It merely identifies changes in the blood flow through oxygen levels in the red blood cells. Experts describe this as the BOLD effect. They are evoked by the energy needs of active nerve cells. Input signals, certain processing stages in the cell protruberances (dendrites) and cell bodies, along with the activity of glial cells, another element of the nervous system, also contribute to this. ‘‘As a result, conclusions about the behavior of individual cells cannot be drawn directly from changing in BOLD signal’ says Dr. Vittorio Caggiano, formerly at Hertie Institute for Clinical Brain Research and Center for Integrative Neuroscience, University Clinic Tübingen(1).The assumption up to now has always been that an adaptation of nerve cells was the basis of the reduction of the BOLD effect seen in experiments when the same action is subsequently performed and then observed. According to the authors of the study, on the basis of the results of the current study the former interpretation of the BOLD adaptation does not stand up.

So how to explain the BOLD adaptation? One interpretation the researchers can offer is the additional raised local field potentials (LFP) in the brain: these do in fact manifest the anticipated adaptation and so they could explain the fMRI data. In every nerve cell the signal transfer goes through input signals and occasionally output signals, so-called action potentials. If the input signal to be converted into an output signal, that would lead to the firing of neurotransmitters. These in turn stimulate the next nerve cell along as a transfer signal. The researchers suggest that LFP express the input signals that come from other areas of the brain and the expression of them in a particular region.

New Interpretation of the Current Study
It has always been that mirror neurons fire in the same way regardless of whether a subject personally performs an action or watches it. Therefore they seemed to be verifiable when one compares the fMRI signals from the execution and the observation of actions, whether of the same kind or different. ‘A one-to-one correspondence of fMRI data and the activity of mirror neurons is thus not possible. Hence from our point of view the need to find a new account of the neuro-imaging studies based on adaptation’ is ho it is summarized by Peter Their, a member of the HIH board and Chairman of the CIN.

(1) Present address: McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT)

Publication
Mirror neurons in monkey area F5 do not adapt to the observation of repeated actions; Vittorio Caggiano, Joern K. Pomper, Falk Fleischer, Leonardo Fogassi, Martin Giese & Peter Thier; Nature Communications 4, Article number: 1433 doi:10.1038/ncomms2419; Received 31 May 2012, Accepted 20 December 2012, Published 05 February 2013; http://www.nature.com/ncomms/journal/v4/n2/full/ncomms2419.html

Press contact
Silke Jakobi

Head of Communication
HIH Hertie Institut for Clinical Brain Research
Center of Neurology Tübingen
Otfried-Müller-Str. 27
72076 Tübingen
Phone ++ 49 (0)7071/29-88800
Fax ++ 49 (0)7071/29-4796
silke.jakobi(at)medizin.uni-tuebingen.de

Silke Jakobi | idw
Further information:
http://www.uni-tuebingen.de
http://www.nature.com/ncomms/journal/v4/n2/full/ncomms2419.html

More articles from Medical Engineering:

nachricht Novel PET tracer identifies most bacterial infections
06.10.2017 | Society of Nuclear Medicine and Molecular Imaging

nachricht Teleoperating robots with virtual reality
05.10.2017 | Massachusetts Institute of Technology, CSAIL

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>