Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

History is made with first small left ventricular assist device implant for young patient

27.03.2014

“Today, we’re going to make history,” said 18-year-old Eric Ramos on the day UT Southwestern Medical Center doctors operated on his ailing heart.

Eric, who has Duchenne muscular dystrophy, is one of only three patients in the United States with the condition to receive a battery-operated left ventricular assist device (LVAD) to keep his weakening heart pumping blood through his body. He is the first patient in the country to be given a specific, smaller LVAD, which means doctors would not need to manipulate his diaphragm, which could compromise his already limited pulmonary function.


Dr. Pradeep Mammen, Associate Professor of Internal Medicine in the division of cardiology, holds the same LVAD, Eric Ramos has to help keep his heart pumping blood through his body.

Duchenne muscular dystrophy, a recessive X-linked form of the disease, affects around 1 in 3,600 boys. Diagnosed at age 6, Eric has used a wheelchair for the past seven years because his muscles, including his heart and lungs, are rapidly degenerating. Nevertheless, Eric has the heart of a champion. He views his latest challenge as an “unreal accomplishment” and says he is honored to be part of history, paving the way for other Duchenne patients with advanced heart failure.

Lead surgeon Dr. Dan Meyer, Professor of Cardio Thoracic Surgery and Director of Mechanical Assist Devices, says it took a team to pull Eric through this historic feat. “We had cardiologists, cardiothoracic surgeons, LVAD coordinators, neurologists, pulmonologists, social workers, nutritionists, and a host of nurses and others excited to be a part of this unique opportunity,” Dr. Meyer said. “Delivering advanced medical care to patients like Eric is something you can only do at an institution like UT Southwestern, where we have the experience and the specialized care to perform higher-risk surgeries that other hospitals would not even entertain.”

The decision to operate, however, was not easy. The team members recognized the severity of the situation, but they were put at ease the moment they met Eric. A senior in high school, Eric spends his free time playing video games, tinkering with computers, and hanging out with his friends, just like most teenage boys. But Eric exudes maturity well beyond his years.

“We could see that Eric is a vibrant young man, despite the fact that he is bound to a wheelchair,” Dr. Meyer said. “The tough part was making sure we would increase his quality of life and that undergoing surgery was worth the risks.”

Because of his faith, Eric says he was cool, calm, and collected the day of his surgery. “Hope canceled out my anxiety and fear,” Eric said. “I knew that I was making history, and that one day people were going to read about my case, and to me, it felt good to be a trailblazer.”

Another person in Eric’s corner is Dr. Pradeep Mammen, Associate Professor of Internal Medicine in the division of cardiology and Medical Director of the Neuromuscular Cardiomyopathy Clinic at UT Southwestern.

Dr. Mammen is one of Eric’s biggest advocates. A heart failure/transplant cardiologist with special expertise in the cardiovascular complications that can occur in patients with neuromuscular disorders, Dr. Mammen spent countless hours conducting background research on all the key components needed to ensure Eric would thrive pre- and post-LVAD implantation.

“For me, working with Eric and advocating on his behalf has been one of the highlights of my career,” Dr. Mammen said. “This is a paradigm shift in how we approach the treatment of Duchenne muscular dystrophy patients, as well as patients with other forms of muscular dystrophy. We clearly have moved the field forward in terms of how we treat patients with muscular dystrophy and subsequent heart failure.”

To Dr. Mammen, Eric is proof of the principle that LVADs can help prolong the lives of muscular dystrophy patients. “This procedure has to be done for the right patient, by the right team,” Dr. Mammen said. “Our team flawlessly executed this endeavor for Eric.”

Eric is happy to have a team of health care professionals working hard to make his life better and, of course, for the support of his family and friends at home in Rowlett, Texas.

Today, when Eric looks in the mirror, he says it is “thrilling to see the torque of the pump pushing blood through my body. My whole body pulsates.” He likens this to the body’s response when a sports car accelerates. Eric looks forward to a bright future, including graduating from high school this spring, and he hopes someday to receive a healthy heart via transplantation.

UT Southwestern has played an integral role throughout the relatively short history of LVAD therapy and in the devices’ rapidly evolving technology. UT Southwestern participated in the landmark clinical trial (REMATCH) that led to FDA approval of the first LVAD for destination therapy and was the only North Texas center to participate in the HeartWare Bridge-to-Transplant trial, which was completed in 2012 and led to FDA approval of the device.

To obtain more information on clinical trials and treatments for advanced heart failure at UT Southwestern, contact the University Hospital Heart and Lung Clinic at 214-645-5505.

About UT Southwestern Medical Center

UT Southwestern, one of the premier academic medical centers in the nation, integrates pioneering biomedical research with exceptional clinical care and education. The institution’s faculty includes many distinguished members, including five who have been awarded Nobel Prizes since 1985. Numbering more than 2,700, the faculty is responsible for groundbreaking medical advances and is committed to translating science-driven research quickly to new clinical treatments. UT Southwestern physicians provide medical care in 40 specialties to nearly 91,000 hospitalized patients and oversee more than 2 million outpatient visits a year.

###

Media Contact: Lisa Warshaw
(214) 648-9349
lisa.warshaw@utsouthwestern.edu

Lisa Warshaw | EurekAlert!

Further reports about: FDA LVAD blood dystrophy failure muscular surgery therapy treatments ventricular

More articles from Medical Engineering:

nachricht The intravenous swim team
28.07.2016 | Drexel University

nachricht MRI technique induces strong, enduring visual association
01.07.2016 | Brown University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-assembling nano inks form conductive and transparent grids during imprint

Transparent electronics devices are present in today’s thin film displays, solar cells, and touchscreens. The future will bring flexible versions of such devices. Their production requires printable materials that are transparent and remain highly conductive even when deformed. Researchers at INM – Leibniz Institute for New Materials have combined a new self-assembling nano ink with an imprint process to create flexible conductive grids with a resolution below one micrometer.

To print the grids, an ink of gold nanowires is applied to a substrate. A structured stamp is pressed on the substrate and forces the ink into a pattern. “The...

Im Focus: The Glowing Brain

A new Fraunhofer MEVIS method conveys medical interrelationships quickly and intuitively with innovative visualization technology

On the monitor, a brain spins slowly and can be examined from every angle. Suddenly, some sections start glowing, first on the side and then the entire back of...

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2016: 7th Conference on the Art, Technology and Theory of Digital Games

29.07.2016 | Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

 
Latest News

Vortex laser offers hope for Moore's Law

29.07.2016 | Power and Electrical Engineering

Novel 'repair system' discovered in algae may yield new tools for biotechnology

29.07.2016 | Life Sciences

Clash of Realities 2016: 7th Conference on the Art, Technology and Theory of Digital Games

29.07.2016 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>