Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Higher volume reduces false positives in screening mammography

Radiologists who interpret a high volume of mammograms may not detect more cancers but are better at determining which suspicious lesions are not malignant, according to a new study published online and in the April print edition of Radiology.

"Contrary to our expectations, we observed no clear association between volume and sensitivity," said the study's lead author, Diana S.M. Buist, Ph.D., M.P.H., senior investigator at the Group Health Research Institute in Seattle. "We did, however, find that radiologists with higher interpretive volume had significantly lower false-positive rates and recalled fewer women per cancer detected."

An exam result is considered to be a false positive when further testing is recommended for a suspicious lesion but no cancer is found. In addition to causing anxiety for patients, false positives prompt additional testing that costs approximately $1.6 billion per year, according to Dr. Buist.

The study, partially funded by the American Cancer Society and the National Cancer Institute, included a review of data from six Breast Cancer Surveillance Consortium mammography registries in California, North Carolina, New Hampshire, Vermont, Washington and New Mexico.

The researchers examined various measures of interpretive volume in relation to screening performance for 120 radiologists who interpreted 783,965 screening mammograms between 2002 and 2006. Volume was measured in four ways: the number of screening and diagnostic mammograms read by a radiologist annually—both separately and in combination—and the ratio of screening to total (diagnostic plus screening) mammograms. Screening performance was measured by sensitivity (the ability to detect all cancers present) and false-positive and cancer detection rates.

The results showed that performance varied not only by the number of exams interpreted, but also by the ratio of screening to total (diagnostic plus screening) mammograms.

"Our analysis demonstrated that screening interpretive performance is unlikely to be affected by volume alone, but rather by a balance in the interpreted exam composition," Dr. Buist said. "The data suggest that radiologists who interpret screening mammograms should spend at least a portion of their time interpreting diagnostic mammograms, because radiologists who interpreted very few diagnostic mammograms had worse performance, even if they read a high volume of screening mammograms."

Because the study found that radiologists with higher annual interpretive volumes had lower false-positive rates—while maintaining sensitivity rates similar to their lower-volume colleagues—the researchers simulated the effect of increasing the minimum interpretive volume required of radiologists practicing in the U.S., which is currently 960 mammograms every two years.

Based on 34 million women aged 40-79 receiving screening mammograms each year, the researchers estimated that increasing the annual minimum total volume requirement to 1,000 would result in 43,629 fewer women being recalled. The estimated cost associated with false-positive results would be reduced to $21.8 million.

"Recommending any increase in U.S. volume requirements would entail crucial decisions about the relative importance of cancer detection versus false positive exams and workforce issues, since changes could curtail workforce supply and women's mammography access," Dr. Buist said.

"The Influence of Annual Interpretive Volume on Screening Mammography Performance in the United States." Collaborating with Dr. Buist were Melissa L. Anderson, M.S., Sebastien J-P.A. Haneuse, Ph.D., Edward A. Sickles, M.D., Robert A. Smith, Ph.D., Patricia A. Carney, Ph.D., Stephen H. Taplin, M.D., M.P.H., Robert D. Rosenberg, M.D., Berta M. Geller, Ed.D., Tracy L. Onega, Ph.D., Barbara S. Monsees, M.D., Lawrence W. Bassett, M.D., Bonnie C. Yankaskas, Ph.D., Joann G. Elmore, M.D., M.P.H., Karla Kerlikowske, M.D., and Diana L. Miglioretti, Ph.D.

This study was supported by the American Cancer Society, the Longaberger Company's Horizon of Hope Campaign, Breast Cancer Stamp Fund, Agency for Healthcare Research and Quality, National Cancer Institute and National Cancer Institute Breast Cancer Surveillance Consortium.

Radiology is edited by Herbert Y. Kressel, M.D., Harvard Medical School, Boston, Mass., and owned and published by the Radiological Society of North America, Inc. (

RSNA is an association of more than 46,000 radiologists, radiation oncologists, medical physicists and related scientists committed to excellence in patient care through education and research. The Society is based in Oak Brook, Ill. (

For patient-friendly information on mammography, visit

Linda Brooks | EurekAlert!
Further information:

More articles from Medical Engineering:

nachricht Gentle sensors for diagnosing brain disorders
29.09.2016 | King Abdullah University of Science and Technology

nachricht New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development
28.09.2016 | Lund University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>