Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Higher volume reduces false positives in screening mammography

22.02.2011
Radiologists who interpret a high volume of mammograms may not detect more cancers but are better at determining which suspicious lesions are not malignant, according to a new study published online and in the April print edition of Radiology.

"Contrary to our expectations, we observed no clear association between volume and sensitivity," said the study's lead author, Diana S.M. Buist, Ph.D., M.P.H., senior investigator at the Group Health Research Institute in Seattle. "We did, however, find that radiologists with higher interpretive volume had significantly lower false-positive rates and recalled fewer women per cancer detected."

An exam result is considered to be a false positive when further testing is recommended for a suspicious lesion but no cancer is found. In addition to causing anxiety for patients, false positives prompt additional testing that costs approximately $1.6 billion per year, according to Dr. Buist.

The study, partially funded by the American Cancer Society and the National Cancer Institute, included a review of data from six Breast Cancer Surveillance Consortium mammography registries in California, North Carolina, New Hampshire, Vermont, Washington and New Mexico.

The researchers examined various measures of interpretive volume in relation to screening performance for 120 radiologists who interpreted 783,965 screening mammograms between 2002 and 2006. Volume was measured in four ways: the number of screening and diagnostic mammograms read by a radiologist annually—both separately and in combination—and the ratio of screening to total (diagnostic plus screening) mammograms. Screening performance was measured by sensitivity (the ability to detect all cancers present) and false-positive and cancer detection rates.

The results showed that performance varied not only by the number of exams interpreted, but also by the ratio of screening to total (diagnostic plus screening) mammograms.

"Our analysis demonstrated that screening interpretive performance is unlikely to be affected by volume alone, but rather by a balance in the interpreted exam composition," Dr. Buist said. "The data suggest that radiologists who interpret screening mammograms should spend at least a portion of their time interpreting diagnostic mammograms, because radiologists who interpreted very few diagnostic mammograms had worse performance, even if they read a high volume of screening mammograms."

Because the study found that radiologists with higher annual interpretive volumes had lower false-positive rates—while maintaining sensitivity rates similar to their lower-volume colleagues—the researchers simulated the effect of increasing the minimum interpretive volume required of radiologists practicing in the U.S., which is currently 960 mammograms every two years.

Based on 34 million women aged 40-79 receiving screening mammograms each year, the researchers estimated that increasing the annual minimum total volume requirement to 1,000 would result in 43,629 fewer women being recalled. The estimated cost associated with false-positive results would be reduced to $21.8 million.

"Recommending any increase in U.S. volume requirements would entail crucial decisions about the relative importance of cancer detection versus false positive exams and workforce issues, since changes could curtail workforce supply and women's mammography access," Dr. Buist said.

"The Influence of Annual Interpretive Volume on Screening Mammography Performance in the United States." Collaborating with Dr. Buist were Melissa L. Anderson, M.S., Sebastien J-P.A. Haneuse, Ph.D., Edward A. Sickles, M.D., Robert A. Smith, Ph.D., Patricia A. Carney, Ph.D., Stephen H. Taplin, M.D., M.P.H., Robert D. Rosenberg, M.D., Berta M. Geller, Ed.D., Tracy L. Onega, Ph.D., Barbara S. Monsees, M.D., Lawrence W. Bassett, M.D., Bonnie C. Yankaskas, Ph.D., Joann G. Elmore, M.D., M.P.H., Karla Kerlikowske, M.D., and Diana L. Miglioretti, Ph.D.

This study was supported by the American Cancer Society, the Longaberger Company's Horizon of Hope Campaign, Breast Cancer Stamp Fund, Agency for Healthcare Research and Quality, National Cancer Institute and National Cancer Institute Breast Cancer Surveillance Consortium.

Radiology is edited by Herbert Y. Kressel, M.D., Harvard Medical School, Boston, Mass., and owned and published by the Radiological Society of North America, Inc. (http://radiology.rsna.org/)

RSNA is an association of more than 46,000 radiologists, radiation oncologists, medical physicists and related scientists committed to excellence in patient care through education and research. The Society is based in Oak Brook, Ill. (RSNA.org)

For patient-friendly information on mammography, visit RadiologyInfo.org.

Linda Brooks | EurekAlert!
Further information:
http://www.rsna.org

More articles from Medical Engineering:

nachricht New imaging technique able to watch molecular dynamics of neurodegenerative diseases
14.07.2017 | The Optical Society

nachricht Quick test finds signs of sepsis in a single drop of blood
03.07.2017 | University of Illinois at Urbana-Champaign

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>