Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-speed drug screen

01.10.2014

Engineers devise technology for rapidly testing drug-delivery vehicles in zebrafish.

MIT engineers have devised a way to rapidly test hundreds of different drug-delivery vehicles in living animals, making it easier to discover promising new ways to deliver a class of drugs called biologics, which includes antibodies, peptides, RNA, and DNA, to human patients.


This schematic drawing shows a new system that can rapidly and automatically inject zebrafish with drugs and then image them to see the drug effects.

Courtesy of the researchers

In a study appearing in the journal Integrative Biology, the researchers used this technology to identify materials that can efficiently deliver RNA to zebrafish and also to rodents. This type of high-speed screen could help overcome one of the major bottlenecks in developing disease treatments based on biologics: It is challenging to find safe and effective ways to deliver them.

“Biologics is the fastest growing field in biotech, because it gives you the ability to do highly predictive designs with unique targeting capabilities,” says senior author Mehmet Fatih Yanik, an associate professor of electrical engineering and computer science and biological engineering. “However, delivery of biologics to diseased tissues is challenging, because they are significantly larger and more complex than conventional drugs.”

“By combining this work with our previously published high-throughput screening system, we are able to create a drug-discovery pipeline with efficiency we had never imagined before,” adds Tsung-Yao Chang, a recent MIT PhD recipient and one of the paper’s lead authors.

Peng Shi, a former MIT postdoc who is now an assistant professor at the University of Hong Kong, is the paper’s other lead author. 

Fish on the fly

Zebrafish are commonly used to model human diseases, in part because their larvae are transparent, making it easy to see the effects of genetic mutations or drugs. 

In 2010, Yanik’s team developed a technology for rapidly moving zebrafish larvae to an imaging platform, orienting them correctly, and imaging them. This kind of automated system makes it possible to do large-scale studies because analyzing each larva takes less than 20 seconds, compared with the several minutes it would take for a scientist to evaluate the larvae by hand.

For this study, Yanik’s team developed a new technology to inject RNA carried by nanoparticles called lipidoids, previously designed by Daniel Anderson, an associate professor of chemical engineering, member of the Koch Institute for Integrative Cancer Research and Institute for Medical Engineering and Science, and an author of the new paper. These fatty molecules have shown promise as delivery vehicles for RNA interference, a process that allows disease-causing genes to be turned off with small strands of RNA. 

Yanik’s group tested about 100 lipidoids that had not performed well in tests of RNA delivery in cells grown in a lab dish. They designed each lipidoid to carry RNA expressing a fluorescent protein, allowing them to easily track RNA delivery, and injected the lipidoids into the spinal fluid of the zebrafish.

To automate that process, the zebrafish were oriented either laterally or dorsally once they arrived on the viewing platform. Once the larvae were properly aligned, they were immobilized by a hydrogel. Then, the lipidoid-RNA complex was automatically injected, guided by a computer vision algorithm. The system can be adapted to target any organ, and the process takes about 14 seconds per fish. 

A few hours after injection, the researchers imaged the zebrafish to see if they displayed any fluorescent protein in the brain, indicating whether the RNA successfully entered the brain tissue, was taken up by the cells, and expressed the desired protein.

The researchers found that several lipidoids that had not performed well in cultured cells did deliver RNA efficiently in the zebrafish model. They next tested six randomly selected best- and worst-performing lipidoids in rats and found that the correlation between performance in rats and in zebrafish was 97 percent, suggesting that zebrafish are a good model for predicting drug-delivery success in mammals. 

“The ability to identify useful drug delivery nanoparticles using this miniaturized system holds great potential for accelerating our discovery process,” Anderson says.

“The lipidoid material screen is just an example demonstrated in this article; a similar strategy can be readily extended to other libraries or other organ systems,” Peng adds. 

Jeff Karp, an associate professor of medicine at Harvard Medical School who was not part of the research team, says this work is “an excellent example of harnessing a multidisciplinary team to partner complementary technologies for the purpose of solving a unified problem. Yanik and colleagues, who have extensive expertise with high-throughput screening in zebrafish and other small animals, have teamed up with Anderson et al., who are leading experts in RNA delivery, to create a new platform for rapidly screening biologics and methods to deliver them. This approach should have utility across multiple disease areas.”

New leads

The researchers are now using what they learned about the most successful lipidoids identified in this study to try to design even better possibilities. “If we can pick up certain design features from the screens, it can guide us to design larger combinatorial libraries based on these leads,” Yanik says.

Yanik’s lab is currently using this technology to find delivery vehicles that can carry biologics across the blood-brain barrier — a very selective barrier that makes it difficult for drugs or other large molecules to enter the brain through the bloodstream. 

The research was funded by the National Institutes of Health, the Packard Award in Science and Engineering, Sanofi Pharmaceuticals, Foxconn Technology Group, and the Hertz Foundation.

Sarah McDonnell | Eurek Alert!
Further information:
http://www.mit.edu

Further reports about: RNA Zebrafish drugs fluorescent protein injected larvae vehicles

More articles from Medical Engineering:

nachricht Novel PET tracer identifies most bacterial infections
06.10.2017 | Society of Nuclear Medicine and Molecular Imaging

nachricht Teleoperating robots with virtual reality
05.10.2017 | Massachusetts Institute of Technology, CSAIL

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>