Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-resolution imaging technology reveals cellular details of coronary arteries

11.07.2011
MicroOCT may greatly improve understanding, diagnosis and treatment of coronary artery disease

Researchers at the Wellman Center for Photomedicine at Massachusetts General Hospital (MGH) have developed a one-micrometer-resolution version of the intravascular imaging technology optical coherence tomography (OCT) that can reveal cellular and subcellular features of coronary artery disease.

In a Nature Medicine paper receiving advance online publication, the investigators describe how microOCT – which provides 10 times greater resolution than standard OCT – was able to show individual arterial and inflammatory cells, including features that may identify vulnerable plaques, within coronary artery samples.

"MicroOCT has the contrast and resolution required to investigate the cellular and subcellular components underlying coronary atherosclerosis, the disease that precipitates heart attack," says Gary Tearney, MD, PhD, of the Wellman Center and the MGH Pathology Department, who led the study. "This high level of performance opens up the future possibility of observing these microscopic features in human patients, which has implications for improving the understanding, diagnosis and therapeutic monitoring of coronary artery disease."

A catheter-based technology, OCT uses reflected near-infrared light to create detailed images of the internal surfaces of blood vessels. Although the technology is already being used to identify arterial plaques that are likely to rupture, standard OCT can clearly image only structures larger than 10 micrometers (millionths of a meter). Using new types of lenses and advanced imaging components, microOCT is able to image structures as small as one micrometer, revealing in intact tissue the detailed information provided by the prepared tissue slides of traditional pathology much faster and in three dimensions.

The researchers describe how using microOCT to study human and animal coronary artery tissue revealed detailed images of:

endothelial cells that line coronary arteries,

inflammatory cells that contribute to the formation of coronary plaques,
smooth muscle cells that produce collagen in response to inflammation,
fibrin proteins and platelets that are involved in the formation of clots
MicroOCT also produced detailed images of stents placed within coronary arteries, clearly distinguishing bare-metal stents from those covered with a drug-releasing polymer and revealing defects in the polymer coating.

"When we are able to implement microOCT in humans – probably in three to five years – the 10 times greater resolution will allow us to observe cells in the coronary arteries of living patients," says Tearney, a professor of Pathology at Harvard Medical School. "The ability to track and follow cells in three dimensions could help us prove or disprove many theories about coronary artery disease and better understand how clots form on a microscopic level. Improved definitions of high-risk plaques will lead to greater accuracy in identifying those that may go on to rupture and block the coronary artery, and the ability to monitor healing around implanted devices like stents could reduce the number of patients who must be on anticlotting medications, which are expensive and have side effects."

Linbo Liu, PhD, of the Wellman Center, developed the microOCT system and is lead author of the Nature Medicine paper. Additional co-authors are Joseph Gardecki, PhD, Seemantini Nadkarni, PhD, Jimmy Toussaint, PhD, Yukako Yagi, PhD, and Brett Bouma, PhD, all of the Wellman Center for Photomedicine at MGH. The study was supported by grants from the National Institutes of Health and the Cystic Fibrosis Foundation. Massachusetts General Hospital has filed patent applications on the microOCT technology.

Celebrating the 200th anniversary of its founding in 1811, Massachusetts General Hospital (www.massgeneral.org) is the original and largest teaching hospital of Harvard Medical School. MGH conducts the largest hospital-based research program in the United States, with an annual research budget of nearly $700 million and major research centers in AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, human genetics, medical imaging, neurodegenerative disorders, regenerative medicine, reproductive biology, systems biology, transplantation biology and photomedicine.

Sue McGreevey | EurekAlert!
Further information:
http://www.massgeneral.org

More articles from Medical Engineering:

nachricht 'Memtransistor' brings world closer to brain-like computing
22.02.2018 | Northwestern University

nachricht MRI technique differentiates benign breast lesions from malignancies
20.02.2018 | Radiological Society of North America

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>