Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Goodbye, implants rejection!

05.08.2016

Physicists of Moscow State University have created a magnetic field which helps avoid implants rejection

A group of Russian physicists, with the contribution from their Swiss colleagues, developed a way to use the therapeutic effect of heating or cooling the tissues due to the magnetocaloric effect. The article with the results of the work was published in the latest issue of the International Journal of Refrigeration.


These are coated polypropylene samples of implants (abdominal nets)

Credit: Vladimir Zverev

A team of the Lomonosov Moscow State University scientists proposed a new way to use the magnetocaloric effect for the targeted delivery of drugs to the implants. Vladimir Zverev, one of the authors (Lomonosov Moscow State University, Faculty of Physics) claims that this is a unique method that uses a negative magnetocaloric effect.

The gist of the magnetocaloric effect (MCE) is reduced to the fact that when exposed to an external magnetic field, the magnetic material changes its temperature, sometimes rising and sometimes, on the contrary, falling (depending on the material). This significant physical phenomenon was discovered in the nineteenth century, although the effect has been described only in 1917. Over the past century, the MCE has been minutely studied, but the interest of researchers increased dramatically in recent decades. This is due to, first, a significant contribution to the physics of magnetic materials, and, second, a fairly extensive area of its possible applications. It can be very successfully used in low-temperature physics, for the production of heat engines, refrigeration and so on.  

 However, the majority of these applications is not ready for commercial use yet, mainly due to the unavailability of the technology. Speaking, for example, about domestic magnetic refrigerators, although they are being developed today by many scientific and industrial laboratories around the world, according to Vladimir Zverev, a member of the Physics Department of MSU, such refrigerators, if they were made today, would be very expensive.

'For such a refrigerator magnetic field of around one Tesla is required, which at today's possibilities makes the prices very high and therefore commercially unacceptable - the very device to generate such a field will cost at least fifteen hundred dollars. It remains to wait for them to fall in price', Vladimir Zverev says.  

However, this did not prevent the authors from suggesting a new application of the magnetocaloric effect, almost ready for massive use - this time in medicine.  

One of the developed methods is called "magnetic fluid hypothermia" and consists in heating cancer tumors with special magnetic nanoparticles, delivered directly to the tumor site. To do this, the researchers developed and created a unique tool to create an alternating high-frequency magnetic field with no analogues in the world, as Vladimir Zverev says. Today, with the help of this facility in the Blokhin Scientific Cancer Centre, the primary research of various cancerous cell cultures was conducted.

The studies on mice were also carried out, which proved biocompatibility and non-toxicity of the microparticles. The experiments on the microparticles' pharmacokinetics are conducted as well, which demonstrate its ability of retention in the tumor, spreading in the body with the blood flow etc.  

 If the possibility of using such magnetocaloric effect in the scientific literature is at least mentioned - in fact that the heating of the tumor may lead to its degradation has long been known, - the second method, proposed by the scientists, is quite unique.

 It is known that one of the problems when implanted of foreign parts in human- artificial joints, abdominal nets, stents esophagus, urinary and biliary ducts, etc. - is the likelihood of rejection. The authors offer to apply a special coating to implants (yet at the stage of the preparation for installing), consisting of several layers. The first layer is a magnetic material, which is cooled in an external magnetic field (a material with a negative magnetocaloric effect).

This layer may be a thin film or a suspension of magnetic microparticles. The second layer is the polymer matrix, in which, as a sponge, absorbs the drug. The polymer matrix is in direct thermal contact with the magnetocaloric material. This entire structure is placed in the body during the operation.

The fact that the polymer used in the technology at the normal body temperature, i.e. at a temperature above 37 degrees, behaves like a jelly, which holds the drug inside. When the magnetic field lowers the temperature, the polymer transits in a liquid state and releases drug at the site of theimplantation. For example, when, after insertion of the implant an inflammation occurs, the non-invasive application of an external magnetic field (for example, in MRI) allows to release the desired dose of drug over the desired time and place.

This method of the 'targeted' drug delivery is good, in particular, by the fact that it only affects the source of inflammation and remains the rest of the body uninfluenced, that is, by definition, completely harmless. There is a problem though - it is unclear what to do if the coated drug is over.

Zverev says that this problem is solvable: 'First, in some cases just a single drug input is need, for example, to paste the abdominal mesh. A release dosage portions of the drug can be controlled by regulating the magnitude of the external magnetic field. It is also possible to replenish a the coat, using the fact that a drug may be chemically linked to the magnetic particles which can be 'dragded' to the desired location in the body by an external magnetic field. This method we haven't developed however, and it is only ideas yet'.

Media Contact

Vladimir Koryagin
science-release@rector.msu.ru

http://www.msu.ru 

Vladimir Koryagin | EurekAlert!

More articles from Medical Engineering:

nachricht Visualizing gene expression with MRI
23.12.2016 | California Institute of Technology

nachricht Illuminating cancer: Researchers invent a pH threshold sensor to improve cancer surgery
21.12.2016 | UT Southwestern Medical Center

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>