Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Goodbye, implants rejection!

05.08.2016

Physicists of Moscow State University have created a magnetic field which helps avoid implants rejection

A group of Russian physicists, with the contribution from their Swiss colleagues, developed a way to use the therapeutic effect of heating or cooling the tissues due to the magnetocaloric effect. The article with the results of the work was published in the latest issue of the International Journal of Refrigeration.


These are coated polypropylene samples of implants (abdominal nets)

Credit: Vladimir Zverev

A team of the Lomonosov Moscow State University scientists proposed a new way to use the magnetocaloric effect for the targeted delivery of drugs to the implants. Vladimir Zverev, one of the authors (Lomonosov Moscow State University, Faculty of Physics) claims that this is a unique method that uses a negative magnetocaloric effect.

The gist of the magnetocaloric effect (MCE) is reduced to the fact that when exposed to an external magnetic field, the magnetic material changes its temperature, sometimes rising and sometimes, on the contrary, falling (depending on the material). This significant physical phenomenon was discovered in the nineteenth century, although the effect has been described only in 1917. Over the past century, the MCE has been minutely studied, but the interest of researchers increased dramatically in recent decades. This is due to, first, a significant contribution to the physics of magnetic materials, and, second, a fairly extensive area of its possible applications. It can be very successfully used in low-temperature physics, for the production of heat engines, refrigeration and so on.  

 However, the majority of these applications is not ready for commercial use yet, mainly due to the unavailability of the technology. Speaking, for example, about domestic magnetic refrigerators, although they are being developed today by many scientific and industrial laboratories around the world, according to Vladimir Zverev, a member of the Physics Department of MSU, such refrigerators, if they were made today, would be very expensive.

'For such a refrigerator magnetic field of around one Tesla is required, which at today's possibilities makes the prices very high and therefore commercially unacceptable - the very device to generate such a field will cost at least fifteen hundred dollars. It remains to wait for them to fall in price', Vladimir Zverev says.  

However, this did not prevent the authors from suggesting a new application of the magnetocaloric effect, almost ready for massive use - this time in medicine.  

One of the developed methods is called "magnetic fluid hypothermia" and consists in heating cancer tumors with special magnetic nanoparticles, delivered directly to the tumor site. To do this, the researchers developed and created a unique tool to create an alternating high-frequency magnetic field with no analogues in the world, as Vladimir Zverev says. Today, with the help of this facility in the Blokhin Scientific Cancer Centre, the primary research of various cancerous cell cultures was conducted.

The studies on mice were also carried out, which proved biocompatibility and non-toxicity of the microparticles. The experiments on the microparticles' pharmacokinetics are conducted as well, which demonstrate its ability of retention in the tumor, spreading in the body with the blood flow etc.  

 If the possibility of using such magnetocaloric effect in the scientific literature is at least mentioned - in fact that the heating of the tumor may lead to its degradation has long been known, - the second method, proposed by the scientists, is quite unique.

 It is known that one of the problems when implanted of foreign parts in human- artificial joints, abdominal nets, stents esophagus, urinary and biliary ducts, etc. - is the likelihood of rejection. The authors offer to apply a special coating to implants (yet at the stage of the preparation for installing), consisting of several layers. The first layer is a magnetic material, which is cooled in an external magnetic field (a material with a negative magnetocaloric effect).

This layer may be a thin film or a suspension of magnetic microparticles. The second layer is the polymer matrix, in which, as a sponge, absorbs the drug. The polymer matrix is in direct thermal contact with the magnetocaloric material. This entire structure is placed in the body during the operation.

The fact that the polymer used in the technology at the normal body temperature, i.e. at a temperature above 37 degrees, behaves like a jelly, which holds the drug inside. When the magnetic field lowers the temperature, the polymer transits in a liquid state and releases drug at the site of theimplantation. For example, when, after insertion of the implant an inflammation occurs, the non-invasive application of an external magnetic field (for example, in MRI) allows to release the desired dose of drug over the desired time and place.

This method of the 'targeted' drug delivery is good, in particular, by the fact that it only affects the source of inflammation and remains the rest of the body uninfluenced, that is, by definition, completely harmless. There is a problem though - it is unclear what to do if the coated drug is over.

Zverev says that this problem is solvable: 'First, in some cases just a single drug input is need, for example, to paste the abdominal mesh. A release dosage portions of the drug can be controlled by regulating the magnitude of the external magnetic field. It is also possible to replenish a the coat, using the fact that a drug may be chemically linked to the magnetic particles which can be 'dragded' to the desired location in the body by an external magnetic field. This method we haven't developed however, and it is only ideas yet'.

Media Contact

Vladimir Koryagin
science-release@rector.msu.ru

http://www.msu.ru 

Vladimir Koryagin | EurekAlert!

More articles from Medical Engineering:

nachricht 3-D visualization of the pancreas -- new tool in diabetes research
15.03.2017 | Umea University

nachricht New PET radiotracer identifies inflammation in life-threatening atherosclerosis
02.03.2017 | Society of Nuclear Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>