Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Good Vibrations: Mediating Mood Through Brain Ultrasound

18.07.2013
University of Arizona researchers have found in a recent study that ultrasound waves applied to specific areas of the brain are able to alter patients' moods. The discovery has led the scientists to conduct further investigations with the hope that this technique could one day be used to treat conditions such as depression and anxiety.

Dr. Stuart Hameroff, professor emeritus of the UA's departments of anesthesiology and psychology and director of the UA's Center for Consciousness Studies, is lead author on the first clinical study of brain ultrasound, which was published in the journal Brain Stimulation.

Hameroff became interested in applying ultrasound to the human brain when he read about a study by colleague Jamie Tyler at the Virginia Polytechnic Institute, who found physiological and behavioral effects in animals of ultrasound applied to the scalp, with the waves passing through the skull.

Hameroff knew that ultrasound vibrates in megahertz frequencies at about 10 million vibrations per second, and that microtubules, protein structures inside brain neurons linked to mood and consciousness, also resonate in megahertz frequencies. Hameroff proposed testing ultrasound treatment for mood on human brains.

"I said to my anesthesiology colleagues, 'we should try this on chronic pain patient volunteers.'" His colleagues respectfully suggested he try it on himself first. Hameroff acquiesced.

After 15 seconds with an ultrasound transducer, a standard ultrasound imaging device, placed against his head, Hameroff felt no effect.

"I put it down and said, 'well, that's not going to work,'" he said. "And then about a minute later I started to feel like I'd had a martini."

His mood was elevated for the next hour or two, Hameroff said. Aware that his experience could be a placebo effect, an imagined effect derived from his expectation to feel a change, Hameroff set out to properly test the treatment with a clinical trial.

With research committee and hospital approval, and patient informed consent, Hameroff and his colleagues applied transcranial ultrasound to chronic pain patients at The University of Arizona Medical Center-South Campus, in a double blind study in which neither doctor nor subject knew if the ultrasound machine had been switched on or off.

Patients reported improvements in mood for up to 40 minutes following treatment with brain ultrasound, compared with no difference in mood when the machine was switched off.

"Encouraging!" Hameroff remarked. "We're referring to transcranial ultrasound as 'TUS,'" he said. "Which is also the airport code for Tucson."

The discovery opens the door to a possible range of new applications of ultrasound in medicine.

"We frequently use ultrasound in the operating room for imaging," said Hameroff. "It's safe as long as you avoid excessive exposure and heating."

The mechanical waves, harmless at low intensities, penetrate the body's tissues and bones, and an echo effect is used to generate images of anatomical structures such as fetuses in the womb, organs and blood vessels.

Additionally, the high-frequency vibrations of ultrasound, which far exceed the range of human hearing and are undetectable when passing through the body, may be more desirable than existing brain stimulation techniques such as transcranial magnetic stimulation, or TMS. Used to treat clinically depressed patients, TMS can have side effects including the unpleasant sensation of magnetic waves moving through the head.

However, "the Brain Stimulation study wasn't very well designed because I'm not a skilled clinical psychologist, plus we were very limited in clinic time," Hameroff said. "So I got two of my colleagues, Jay Sanguinetti and John Allen, to join in and help out."

Sanguinetti, a doctoral candidate in the department of psychology and his adviser Allen, a UA distinguished professor of psychology, were intrigued by Hameroff's idea of testing ultrasound.

They conducted an initial study of ultrasound on UA psychology student volunteers, recording vital signs such as heart rate and breath rate, and narrowed down the optimum treatment to 2 megahertz for 30 seconds as the most likely to produce a positive mood change in patients.

"With 2 megahertz those who were stimulated with ultrasound reported feeling 'lighter,' or 'happier;' a little more attentive, a little more focused and a general increase in well-being," Sanguinetti said.

Allen and Sanguinetti then began a double blind clinical trial to verify the statistical significance of their findings and to rule out any possibility of a placebo effect in their patients. Results of the trials are being analyzed, Sanguinetti said.

"What we think is happening is that the ultrasound is making the neurons a little bit more likely to fire in the parts of the brain involved with mood," thus stimulating the brain's electrical activity and possibly leading to a change in how participants feel, Sanguinetti said.

The UA researchers are collaborating with the Silicon Valley-based company Neurotrek, which is developing a device that potentially could target specific regions of the brain with ultrasound bursts.

The UA researchers will work with a prototype of the Neurotrek device to test its efficacy and potential applications.

"The idea is that this device will be a wearable unit that noninvasively and safely interfaces with your brain using ultrasound to regulate neural activity," Sanguinetti said.

CONTACTS:

Stuart Hameroff, Director, UA Center for Consciousness Studies: 520-621-9317 hameroff@email.arizona.edu

Shelley Littin, UA University Communications: 520-621-1877; littin@email.arizona.edu

Links:
Research paper: http://www.quantumconsciousness.org/documents/TUSinpress2.pdf

Shelley Littin | University of Arizona
Further information:
http://www.uanews.org/story/good-vibrations-mediating-mood-through-brain-ultrasound

More articles from Medical Engineering:

nachricht Rutgers researchers develop automated robotic device for faster blood testing
14.06.2018 | Rutgers University

nachricht Speech comprehension with a cochlear implant
04.06.2018 | Universität zu Lübeck

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Better model of water under extreme conditions could aid understanding of Earth's mantle

21.06.2018 | Earth Sciences

What are the effects of coral reef marine protected areas?

21.06.2018 | Life Sciences

The Janus head of the South Asian monsoon

21.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>