Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global database needed to guarantee identification of victims in mass disasters

19.03.2010
An expert in forensic anthropology argues that the database should include computer records of citizens such as anthropological data, physiognomic characteristics, medical information, radiographic files, dental records and numbers of different identity documents. Tzipi Kahana believes that radiographic techniques, together with information from this database, are a reliable mechanism for identifying bodies after natural disasters or attacks.

Forensic Anthropology, as an independent discipline within the field of forensic science, has evolved since the early twentieth century in tandem with technological developments of the scientific world. One of its best tools has been the implementation of radiological techniques for positive identification of human remains.

A research conducted at the University of Granada warns of the need to create "immediately" a database of citizens, from all countries of the world, that include computer records of citizens such as anthropological data, physiognomic characteristics, medical information, radiographic files, dental records and numbers of different identity documents.

This work has been performed by Tzipi Kahana (former student at the Hebrew University of Jerusalem) at the Department of Physical Anthropology of the University of Granada, and directed by professors Miguel C. Botella López and Immaculada Alemán Aguilera. Its author argues that the creation of this database “is crucial to the proper thanatological management following natural disasters or attacks", in order to guarantee an accurate diagnosis of the data of death and to enable the identification of victims.

Tsunami in Thailand
Kahana worked with the Israel Police in the task of identifying bodies after the tsunami that hit Phuket (Thailand) in December 2004. They were the first to reach the area after the disaster and, along with other teams that arrived successively (Italy, Switzerland, Japan, Canada and Portugal), identified more than 600 corpses. She was also active in identifying victims of the terrorist attack on the Asociación Mutual Israelita Argentina (AMIA) which took place in Buenos Aires, in 1994.

In this work, the scientist has analyzed how new radiographic technologies comply with legal requirements of the forensic field, studying the progressive development of Forensic Radiology as a new discipline through its symbiotic relationship with Forensic Anthropology. Tzipi Kahana has based her research on her own experience in the field of forensic anthropology for 20 years and, for the first time, her work meets the new legal requirements, the magnitude of major catastrophes of 19th and 20th centuries, and technological advances of the modern world.

From her point of view, “it is essential” to carry out a radiographic examination of all human remains in the field of forensic identification, as this examination not only provides documentation of the recovered material, but it is useful both in the identification of skeletal trauma and in the location of teeth hidden in the tissues.

A crucial role
Tzipi Kahana stresses that radiological investigation, as part of the thanatological examination, "is very useful in cases of traffic accidents, gunshot injuries and identification of corpses." Furthermore, radiographic examination plays a crucial role in the positive identification of human remains on Forensic Anthropology and Odontology.

The effectiveness and usefulness of any identification technique depends on the speed at which ante mortem data are available. In Israel, the U.S. and UK, countries where there are no fingerprint records of all people, an average of 10% of all medico-legal cases are individuals or human remains whose identity is unknown. Of these, 80% were identified through radiographic comparisons during the 90s.

The UGR researcher points out that some of the degenerative changes of the spine “are excellent radiological features, useful for the identification of corpses and human remains”, since, in general, "the radiographs of the spine contain a large number of individualizing features".

Useful vertebral features for necroidentification include conditions such as evidence of healed trauma, degenerative and infectious processes, congenital malformations and normal anatomic variations of the spinal structures.

Part of the results of this research has been published in scientific journals such as British Journal of Radiology, Journal of Forensic Identification, American Journal of Forensic Medicine and Pathology, Journal of Clinical Forensic Medicine and Forensic Pathology Reviews, among others.

Reference: Tzipi Kahana. Department of Physical Anthropology, University of Granada. Tel.:972-507-643-407.

E-mail: kahana.tzipi@gmail.com

Prof. Miguel Botella López
Director of the Forensic Anthropology Laboratory, University of Granada
Tel. 958 243535 | 958 24 35 26. E-mail: botella@ugr.es

Tzipi Kahana | EurekAlert!
Further information:
http://www.ugr.es

More articles from Medical Engineering:

nachricht UTSA study describes new minimally invasive device to treat cancer and other illnesses
02.12.2016 | University of Texas at San Antonio

nachricht Earlier Alzheimer's diagnosis may be possible with new imaging compound
02.11.2016 | Washington University School of Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>