Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gamma knife treatment for glioblastomas shows promising results

03.11.2009
Survival rate increased by almost 4 months

Researchers from University Hospitals Case Medical Center report promising results from a cutting-edge research study that treated the aggressive brain tumors glioblastoma multiforme (GBM) using a novel type of imaging called MR spectroscopy coupled with high dose radiation in the form of Gamma Knife radiosurgery.

Patients' survival rates increased by almost four months (3.7 months) compared with patients who were treated with traditional conventional radiotherapy alone.

"The four month increase is quite significant as the median survival of patients treated with conventional radiotherapy alone is only one year," said Douglas B. Einstein, M.D., Ph.D., lead author of the study and Vice Chairman and Clinical Director of the Department of Radiation Oncology at University Hospitals Case Medical Center and Assistant Professor at Case Western Reserve University School of Medicine.

The results of this study were presented at the American Society for Radiation Oncology (ASTRO) meeting in Chicago on Nov. 2, 2009.

GBM is the most common and aggressive type of brain cancer, and is notorious for growing back within months of surgery. It is the type of cancer that the late Sen. Edward Kennedy battled.

Thirty-five patients were enrolled in this Phase II, five-year study. Patients underwent MR spectroscopy imaging to non-invasively identify regions of the GBM tumor that were more aggressive than other areas. These regions were then targeted with high-dose radiation from a Gamma Knife. Treatment was then followed by standard conventional radiotherapy.

The Gamma Knife is an instrument that allows physicians to perform radiosurgery, a non-invasive neurosurgical procedure that uses powerful doses of radiation to target and treat diseased brain tissue while leaving surrounding tissue intact. The state-of-the art technology allows physicians to operate on brain lesions often considered inoperable.

MR spectroscopy involves a specialized MR scan where peaks of metabolic compounds can be identified and quantitated within the MR image. These peaks include choline which is elevated in areas of the MR image that have a high cell turnover such as an active brain tumor and NAA found in neuronal tissue and used to separate normal neuronal cells from the glioma brain tumor cells.

Given the positive finding from this study, a multi-center Phase III randomized trial is being designed, said Dr. Einstein.

About University Hospitals

University Hospitals serves the needs of patients through an integrated network of hospitals, outpatient centers and primary care physicians. At the core of our health system is University Hospitals Case Medical Center. The primary affiliate of Case Western Reserve University School of Medicine, University Hospitals Case Medical Center is home to some of the most prestigious clinical and research centers of excellence in the nation and the world, including cancer, pediatrics, women's health, orthopedics and spine, radiology and radiation oncology, neurosurgery and neuroscience, cardiology and cardiovascular surgery, organ transplantation and human genetics. Its main campus includes the internationally celebrated UH Rainbow Babies & Children's Hospital, ranked second in the nation for the care of critically ill newborns; UH MacDonald Women's Hospital, Ohio's only hospital for women; and UH Ireland Cancer Center, part of the NCI-designated Case Comprehensive Cancer Center.

George Stamatis | EurekAlert!
Further information:
http://www.uhhospitals.org

More articles from Medical Engineering:

nachricht Virtual Reality in Medicine: New Opportunities for Diagnostics and Surgical Planning
07.12.2016 | Universität Basel

nachricht 3-D printed kidney phantoms aid nuclear medicine dosing calibration
06.12.2016 | Society of Nuclear Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>