Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fraunhofer MEVIS: New procedure to make brain surgery safer

31.05.2011
Brain interventions must be planned so that the neurosurgeon can access and remove the tumor without causing unnecessary damage. Before the brain tumor can be removed, crucial questions must be answered. Where do the functional areas of the cortex (gray matter) of the patient lie?

What are the paths of the nerve fiber tracts that connect them? Answering these questions is important because the functional areas of the brain are interconnected via nerve pathways, also known as nerve fiber tracts.

These nerve tracts must be protected as much as possible; otherwise, permanent dysfunction could occur. Furthermore, nerve tracts can be pushed or infiltrated by the brain tumor itself. If nerve tracts become damaged during an operation, there is a risk that distant functional areas connected to the tumor-afflicted part of the brain could be affected and induce lasting sensory, motor, and cognitive impairment. Therefore, neurosurgeons attempt to answer these questions for each patient during the planning stage of the brain operation to minimize the risks present in the intervention. To do so, surgeons require medical imagery of each patient's brain anatomy and function that is as realistic and precise as possible. However, medical images contain inaccuracies that arise from the processing, modeling, and reconstruction of patient data.

Solving these problems requires more than merely improving existing imaging methods. Mathematical analysis and models must be integrated to produce information about the location of the tumor, functional areas, and nerve fiber tracts, to increase the accuracy of patient-specific data, and to give the surgeon dependable knowledge.

The Fraunhofer MEVIS Institute for Medical Image Computing in Bremen, Germany has pioneered a procedure that analyzes uncertainty in patient-specific images, modeling, and reconstruction and incorporates this information into reconstructions of patient data. This procedure allows safety margins around nerve tracts in the brain to be more accurately determined. In addition, the reliability of the reconstructed data is calculated to supply the surgeon with accurate information concerning nerve tract locations, paths, and intersections and to construct safety margins around the nerve fiber tracts. By integrating errors in measurement, reconstruction, and modeling, the exact locations of tracts in a space-occupying tumor are calculated. This gives the neurosurgeon a reliable prognosis concerning where the incision in the brain should be made and which safety margins should be chosen to avoid harming nerve tracts and irreversibly damaging important functional areas. Before an intervention, the surgeon can evaluate patient-specific risks. These software assistants will be refined and implemented for neuronavigation in future operations, providing the surgeon with updated information during surgery that can be compared to planning data.

The paths of nerve tracts in the brain and the functional areas that they connect can now be explored by visitors of the "New Paths in Medicine" exhibit on the MS Wissenschaft exhibition ship. The converted inland vessel is underway until September 29, 2011 and docks in 35 different cities. During the "Year of Health Research", visitors can familiarize themselves with the field's newest trends, developments, and research findings. The exhibit showcases a physical three-dimensional model of the brain produced through an innovative printing process based on the medical image data of a real person. This brain model can be touched and viewed from different angles thanks to its rotating base. Nerve tracts can be activated by touching sensors on the physical model that correspond to functional areas of the brain. The brain is displayed on a screen along with the activated nerve tracts that are responsible, for instance, for sight, speech, feeling, and motion. This new form of interactive exhibit was developed by Fraunhofer MEVIS in Bremen together with the Universum® Science Center in Bremen to demonstrate how modern image processing combined with mathematics and intelligent software can help make neurosurgical operations more predictable and safe. The three-dimensional print of the brain was produced by the Fraunhofer-Institut ITWM in Kaiserslautern.

Background Information:

Since 1995, Fraunhofer MEVIS has pioneered research and development of computer assistance for image-based, personalized medicine. Risk minimization in planning and surgical intervention constitutes an important field of activity. Researchers at Fraunhofer MEVIS develop mathematical models that characterize the human body's structures such as the vascular tree of the liver or the bronchi of the lung. These models are processed for each patient and used to determine how much of a tumor and surrounding tissue can be removed and when to mind safety margins to protect vital structures. Thanks to detailed, patient-specific reconstructed models of organs, surgeons can estimate the risks of an operation before intervention and plan optimal procedures. With more than 100 clinical partners worldwide and over 5,500 prepared clinical cases for liver surgery planning alone, Fraunhofer MEVIS draws upon extensive experience in surgical operation planning and clinical procedures. This experience has led to the development of a navigation system for liver surgery which records ultrasound data and correlates it with planning data. During surgery, new information can be recorded and added to the planning data.

With the help of the dependable knowledge gained from reconstruction and analysis, surgeons no longer need to rely solely on implied knowledge attained through experience. Skilled and experienced surgeons can reliably conduct an intervention and identify risks without having to explicitly specify why they have intuitively chosen to abandon a conventional surgical path in favor of a different one. Less-experienced surgeons lack this implicit knowledge. Fraunhofer MEVIS software assistants can also help these surgeons work more safely by providing this knowledge. This is relevant not only for individual patients, but also for the quality of care as a whole. Thanks to these new processes and software assistants developed by Fraunhofer MEVIS, the quality of care in both urban and rural clinics can be improved.

About Fraunhofer MEVIS:

The Fraunhofer MEVIS Institute for Medical Image Computing in Bremen is one of the world's leading internationally connected research and development centers for computer assistance in image-based medicine. It follows a patient-centered, workflow-oriented approach towards resolving clinically relevant issues in image-based diagnosis and therapy. Fraunhofer MEVIS concentrates on epidemiologically significant diseases of the cardiovascular system, brain, liver, and lung, as well as oncological disorders.

Dr. Guido Prause | EurekAlert!
Further information:
http://www.mevis.fraunhofer.de

More articles from Medical Engineering:

nachricht Penn first in world to treat patient with new radiation technology
22.09.2017 | University of Pennsylvania School of Medicine

nachricht Skin patch dissolves 'love handles' in mice
18.09.2017 | Columbia University Medical Center

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>