Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Fraunhofer ISC enables wearable technology for medical devices


Functional adaptable and smart materials enable innovative applications, products and designs. The Fraunhofer ISC presents its competence in wearable and flexible technology for medical devices and technical textiles at the IDTechEX, Santa Clara (USA) from 18th to 19th November 2015.

Elastic sensors integrated in textiles

Elastic sensors for textile integration e.g. for three-dimensional pressure readings for diabetics.

Source: K. Selsam-Geißler, Fraunhofer ISC

A new class of mechanical sensors is especially suitable for integration into woven or knitted fabrics because of their high elasticity and their soft and flexible characteristics. These dielectric elastomer sensors (DES) can be integrated into the textile by bonding or sewing, and can be used to measure deformations, forces and pressures.

Very high strains up to 100 % and more can be achieved. DES consists of a very elastic elastomer film coated with highly flexible electrodes on both sides. By patterning the electrodes on the elastomer film an array of many elements can be built up.

The textile-integrated sensors are washable, show a high wearing comfort and are reasonable in price. Silicone rubber is the preferred basic material for the elastomer film and through chemical cross-linking offers a broad variability of hardness. As a result, the material can be adapted to the specific requirements of the sensor.

Versatile applications for medical and training purposes

The textile-integrated elastomer sensors are applicable in medical devices e.g. for preventing bedsores or for localizing the pressure distribution in shoes. They can also support personal training by measuring the posture via the clothes or as an input device for game and fitness device controlling.

The textile form is very variable – if it’s a stocking, glove or shirt – as the sensors are stretchable and easy to process. Beyond that DES improve industrial safety, e.g. of human-machine interfaces in collision detection systems.

Three-dimensional pressure readings for diabetics

At the IDTechEx, Fraunhofer ISC shows a novel kind of pressure stocking developed together with Fraunhofer IIS: It protects diabetics against wounding via an integrated sensor system that sends a warning signal when pressure in the shoe is locally too high. As diabetics often have little feeling in their feet they don’t perceive pressure or temperature signals.

This can result in unnoticed wounds that then may develop into abscesses. Therefore, many diabetics have to have toes or feet amputated. In total, 40 very fine, dielectric elastomer sensors measure compression load and distribution in the stocking. They are attached to the stocking’s sole, the heel, the top and the ankle, in order to achieve a three-dimensional reading. Existing systems measure the pressure distribution only on the bottom of the foot using shoe inserts.

If a patient stands in one spot for an extended period, pressure will rise. The sensors recognize this rise and transmit the measurement signal via a conductive thread to a low cost wireless electronic unit. The application-specific integrated circuit (ASIC) chip collects the measurement data from 40 capacitive sensors and the controller transmits the data wirelessly to a smartphone or tablet e.g. to advise the diabetes patient to change foot position or weight distribution.

Fraunhofer ISC has submitted this project for an IDTechEx Award 2015.

Flexible, light and thin – further developments

Apart from the textile-integrated sensors, Fraunhofer ISC presents its expertise in printed electronics, 3D printing, thin film batteries, and multifunctional barrier coatings for flexible films.
Attendees can meet the experts of Fraunhofer ISC at booth P21 at the IDTechEX, Santa Clara (USA).

Weitere Informationen:

Marie-Luise Righi | Fraunhofer-Institut für Silicatforschung ISC

More articles from Medical Engineering:

nachricht Münster researchers make a fly’s heartbeat visible / Software automatically recognizes pulse
12.03.2018 | Westfälische Wilhelms-Universität Münster

nachricht 3-D-written model to provide better understanding of cancer spread
05.03.2018 | Purdue University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>