Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fraunhofer ISC enables wearable technology for medical devices

29.10.2015

Functional adaptable and smart materials enable innovative applications, products and designs. The Fraunhofer ISC presents its competence in wearable and flexible technology for medical devices and technical textiles at the IDTechEX, Santa Clara (USA) from 18th to 19th November 2015.

Elastic sensors integrated in textiles


Elastic sensors for textile integration e.g. for three-dimensional pressure readings for diabetics.

Source: K. Selsam-Geißler, Fraunhofer ISC

A new class of mechanical sensors is especially suitable for integration into woven or knitted fabrics because of their high elasticity and their soft and flexible characteristics. These dielectric elastomer sensors (DES) can be integrated into the textile by bonding or sewing, and can be used to measure deformations, forces and pressures.

Very high strains up to 100 % and more can be achieved. DES consists of a very elastic elastomer film coated with highly flexible electrodes on both sides. By patterning the electrodes on the elastomer film an array of many elements can be built up.

The textile-integrated sensors are washable, show a high wearing comfort and are reasonable in price. Silicone rubber is the preferred basic material for the elastomer film and through chemical cross-linking offers a broad variability of hardness. As a result, the material can be adapted to the specific requirements of the sensor.

Versatile applications for medical and training purposes

The textile-integrated elastomer sensors are applicable in medical devices e.g. for preventing bedsores or for localizing the pressure distribution in shoes. They can also support personal training by measuring the posture via the clothes or as an input device for game and fitness device controlling.

The textile form is very variable – if it’s a stocking, glove or shirt – as the sensors are stretchable and easy to process. Beyond that DES improve industrial safety, e.g. of human-machine interfaces in collision detection systems.

Three-dimensional pressure readings for diabetics

At the IDTechEx, Fraunhofer ISC shows a novel kind of pressure stocking developed together with Fraunhofer IIS: It protects diabetics against wounding via an integrated sensor system that sends a warning signal when pressure in the shoe is locally too high. As diabetics often have little feeling in their feet they don’t perceive pressure or temperature signals.

This can result in unnoticed wounds that then may develop into abscesses. Therefore, many diabetics have to have toes or feet amputated. In total, 40 very fine, dielectric elastomer sensors measure compression load and distribution in the stocking. They are attached to the stocking’s sole, the heel, the top and the ankle, in order to achieve a three-dimensional reading. Existing systems measure the pressure distribution only on the bottom of the foot using shoe inserts.

If a patient stands in one spot for an extended period, pressure will rise. The sensors recognize this rise and transmit the measurement signal via a conductive thread to a low cost wireless electronic unit. The application-specific integrated circuit (ASIC) chip collects the measurement data from 40 capacitive sensors and the controller transmits the data wirelessly to a smartphone or tablet e.g. to advise the diabetes patient to change foot position or weight distribution.

Fraunhofer ISC has submitted this project for an IDTechEx Award 2015.

Flexible, light and thin – further developments

Apart from the textile-integrated sensors, Fraunhofer ISC presents its expertise in printed electronics, 3D printing, thin film batteries, and multifunctional barrier coatings for flexible films.
Attendees can meet the experts of Fraunhofer ISC at booth P21 at the IDTechEX, Santa Clara (USA).

Weitere Informationen:

http://www.isc.fraunhofer.de
https://www.youtube.com/watch?v=0P8FEeoG7mY

Marie-Luise Righi | Fraunhofer-Institut für Silicatforschung ISC

More articles from Medical Engineering:

nachricht Novel breast tomosynthesis technique reduces screening recall rate
21.02.2017 | Radiological Society of North America

nachricht Biocompatible 3-D tracking system has potential to improve robot-assisted surgery
17.02.2017 | Children's National Health System

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>