Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Could FastStitch device be the future of suture?

17.08.2012
After a surgeon stitches up a patient's abdomen, costly complications -- some life-threatening -- can occur. To cut down on these postoperative problems, Johns Hopkins undergraduates have invented a disposable suturing tool to guide the placement of stitches and guard against the accidental puncture of internal organs.

The student inventors have described their device, called FastStitch, as a cross between a pliers and a hole-puncher. Although the device is still in the prototype stage, the FastStitch team has already received recognition and raised more than $80,000 this year in grant and prize money to move their project forward. Among their wins were first-place finishes in University of California, Irvine, and University of Maryland business plan competitions and in the ASME International Innovation Showcase.

The FastStitch device is needed, the students say, to improve the way up to 5 million open abdominal surgeries are conducted annually in the United States alone for treatment of cancer, liver problems and other common ailments. If incisions from those procedures are not closed properly, a patient can develop complications such as infection, herniation and evisceration, all of which require additional treatment and in some cases, more surgery. Just one of these complications --herniation, in which intestinal tissue can protrude through the abdominal wall after the muscle layer splits apart -- leads to $2.5 billion in additional costs annually in follow-up treatment and medical malpractice expenses, the students said.

Addressing this problem became a biomedical engineering course assignment for eight Johns Hopkins students over the past school year. They were asked to design and test a tool that that would improve the way surgeons stitch together the strongest part of the abdomen, the muscle layer called the fascia, which is located just below the patient's skin. "Doctors who have to suture the fascial layer say it can be like pushing a needle through the leather of your shoe," said team member Luis Hererra, a sophomore biomedical engineering major from Downey, Calif. "If the needle accidentally cuts into the bowel, it can lead to a sepsis infection that can be very dangerous."

To help prevent this, the students designed the FastStitch needle to remain housed within the jaws of the stitching tool. "You place the fascial layer between the top and bottom arms of the device," said Sohail Zahid, of Morris Plains, N.J., leader of the student team. "Then, as you close the arms, the spring-loaded clamp is strong enough to punch the needle through the fascial layer. When this happens, the needle moves from one arm of the tool to the other."

The device also features a visual guide to help ensure that the stitches are placed evenly, located the proper distance away from the incision and apart from one another. This should also reduce postoperative complications, the students said. The hand-size pliers-like shape was chosen because it would feel familiar to surgeons and require less training. The prototype was constructed mostly of ABS plastic, so that the instrument can be inexpensive and discarded after one use.

"We're developing the future of suture," said Zahid, who earned his undergraduate degree in May and has applied to Johns Hopkins' M.D./Ph.D. program in biomedical engineering. "We believe that if the FastStitch tool is used to close abdominal incisions, it will help in three important ways: It will help surgeons by making the closure process simpler and safer. It will help hospitals by reducing costs. And, most importantly, it will help patients by reducing post-operative complications."

Physician Hien Nguyen, an assistant professor of surgery in the Johns Hopkins School of Medicine, served as the students' clinical advisor during the development of FastStitch. "Just about every major operation in the chest and abdomen requires a large cut to be made through the muscle layers," he said. "If these layers are not brought back together evenly, complications can occur. This device allows the surgeon to bring the muscle layers back together evenly, safely and quickly, and this can lead to better outcomes and fewer complications."

Nguyen had discussed the need for a better suture tool with the undergraduate design team in a program offered by the Department of Biomedical Engineering, which is shared by the university's School of Medicine and its Whiting School of Engineering. The course is conducted within the Center for Bioengineering Innovation and Design.

In addition to Zahid and Herrera, the other students who have participated in the FastStitch project are Andy Tu, Daniel Peng, Stephen Van Kootyen, Leslie Myint, Anvesh Annadanam and Haley Huang. Through the Johns Hopkins Technology Transfer office, the team members have obtained preliminary patent protection for their invention. All eight students are listed as co-inventors, along with Nguyen and Johns Hopkins graduate student Adam Clark.

The students have formed a Baltimore-based company, Archon Medical Technologies, to conduct further research and development of FastStitch. The company is being supported by grant funding and by most of the prize money won in the student invention and business plan contests earlier this year. Animal testing of the device is under way, and further testing with human cadavers is expected to begin later this year.

Color images and video available; contact Phil Sneiderman.
Related links:
Johns Hopkins Department of Biomedical Engineering: www.bme.jhu.edu
Center for Bioengineering Innovation & Design: http://cbid.bme.jhu.edu/
Whiting School of Engineering: http://engineering.jhu.edu/
Archon Medical Technologies: http://www.archonmed.com
Note: A video related to this release is at
http://www.youtube.com/watch?v=nSx88E131oo

Phil Sneiderman | EurekAlert!
Further information:
http://www.jhu.edu
http://www.youtube.com/watch?v=nSx88E131oo

More articles from Medical Engineering:

nachricht UCLA engineers use deep learning to reconstruct holograms and improve optical microscopy
22.11.2017 | University of California - Los Angeles

nachricht First transcatheter implant for diastolic heart failure successful
16.11.2017 | The Ohio State University Wexner Medical Center

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

UCLA engineers use deep learning to reconstruct holograms and improve optical microscopy

22.11.2017 | Medical Engineering

Watching atoms move in hybrid perovskite crystals reveals clues to improving solar cells

22.11.2017 | Materials Sciences

New study points the way to therapy for rare cancer that targets the young

22.11.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>