Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fast prediction of axon behavior

21.07.2011
Researchers at Case Western Reserve University have developed a computer modeling method to accurately predict how a peripheral nerve axon responds to electrical stimuli, slashing the complex work from an inhibitory weeks-long process to just a few seconds.

The method, which enables efficient evaluation of a nerve's response to millions of electrode designs, is an integral step toward building more accurate and capable electrodes to stimulate nerves and thereby enable people with paralysis or amputated limbs better control of movement.

To increase the accuracy of the results, the researchers included a key parameter overlooked in past mathematical approaches that were equally fast, but inaccurate. With the new techniques, electrode design can be optimized using advanced algorithms based on natural genetics.

An explanation of the work, which the team hopes others in the field will freely use, and a second method that was simpler and faster but proved less effective, are now available online in the Journal of Neural Engineering.

"We believe this will allow the next generation of computer-aided development of electrodes," said Dustin Tyler, associate professor of biomedical engineering at Case School of Engineering and senior author of the paper.

Since his graduate school days, Tyler has been developing electrodes to stimulate nerves in paralyzed patients and amputees. Taking the large step from animal models to human clinical trials can be improved with better computer modeling, he said.

"Finding the optimal way to stimulate a nerve is kind of like the 'travelling salesman' trying to figure out which is the most efficient route through a group of cities," Tyler said.

Mapping each possible route and figuring the time spent on the road is very difficult to do with a simple equation.

But, using a complex mathematical formula called a genetic algorithm to simultaneously consider all the routes, or in Tyler's predicament electrode designs, and determining the best requires that each design be evaluated in fractions of seconds. This was not possible previously.

The genetic algorithm mimics the process of natural selection, gene recombination and mutation seen in nature. Or, in this case, takes into account which portions of a neuron to stimulate, how much, with how many points of contact, and more variables.

By adding a variable: the magnitude of the voltage outside the cell produced by the electrode, Tyler's group raised the accuracy beyond current techinques.

They used the free-online nerve simulation environment NEURON developed at Yale University. The data the team used is included in the supplemental materials of their paper and may be downloaded for free, said Erik Petersen, a PhD student at Case Western Reserve and lead author. The third author is Oliver Izad, a former master's student in Tyler's lab.

Their method was developed specifically for peripheral motor nerve axons. Nerves cells with different structures, such as those in the brain, spinal cord, or organs are still being investigated.

The researchers are now developing parameters that would take into account these variations in structure to extend the method to work for all of them, further cutting time needed to develop accurate models.

Kevin Mayhood | EurekAlert!
Further information:
http://www.case.edu

More articles from Medical Engineering:

nachricht Visualizing gene expression with MRI
23.12.2016 | California Institute of Technology

nachricht Illuminating cancer: Researchers invent a pH threshold sensor to improve cancer surgery
21.12.2016 | UT Southwestern Medical Center

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>