Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Experts offer pointers for optimizing radiation dose in head CT

01.08.2011
An article in the August issue of the Journal of the American College of Radiology summarizes methods for radiation dose optimization in head computed tomography (CT) scans. Head CT is the second most commonly performed CT examination, with 28 percent of the total number of CT examinations.

Magnetic resonance imaging (MRI) has emerged as the imaging modality of choice for a vast majority of brain and spinal indications. However, CT remains an integral part of modern neuroradiologic practice that can provide lifesaving information about patient management, specifically in patients with cerebrovascular diseases and head trauma.

Investigators from Massachusetts General Hospital, Harvard Medical School, in Boston, MA, and Johns Hopkins University in Baltimore, MD, looked at various head CT examinations and outlined strategies for radiation dose reduction for the application of CT in the head, paranasal sinuses and spine.

"In the head, specific scanning protocols must be assigned depending on the examination type or clinical indication, such as routine head CT, CT angiography, CT perfusion and paranasal or facial CT. In addition, users must ensure that CT is being performed for a valid clinical indication, whereby CT is expected to add information that will affect patient management," said Mahadevappa Mahesh, MS, PhD author of the article.

Investigators emphasize the use of certain techniques such as lower tube current, automatic exposure control and scanning at a lower tube voltage (especially for perfusion CT scans) are key for allowing substantial dose reduction for head CT examinations in both children and adults.

For more information about radiation safety in children, visit www.imagegently.org.

For more information about radiation safety in adults, visit www.imagewisely.org.

The August issue of JACR is an important resource for radiology and nuclear medicine professionals as well as students seeking clinical and educational improvement.

For more information about JACR, please visit www.jacr.org.

To receive an electronic copy of an article appearing in JACR or to set up an interview with a JACR author or another ACR member, please contact Heather Curry at 703-390-9822 or PR@acr.org.

Heather Curry | EurekAlert!
Further information:
http://www.acr.org
http://www.jacr.org

More articles from Medical Engineering:

nachricht Biocompatible 3-D tracking system has potential to improve robot-assisted surgery
17.02.2017 | Children's National Health System

nachricht Real-time MRI analysis powered by supercomputers
17.02.2017 | University of Texas at Austin, Texas Advanced Computing Center

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>