Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enhancing imaging capabilities with breast tomosynthesis

15.10.2009
Siemens releases first mammography systems equipped with 3D tomosynthesis

Siemens Healthcare has now integrated 3D tomosynthesis into its Mammomat Inspiration digital mammography platform. This technology compiles three-dimensional images of the breast and can therefore detect tumors even if hidden by overlapping tissue.


This enables a more accurate diagnosis than before and reduces the number of false positive findings. The first Mammomat systems with tomosynthesis have now been installed in Germany and in Belgium.

Dr. Renate Tewaag from Radprax - a group of practices specializing in radiology, nuclear medicine and radiation therapy - was the first radiologist in Germany to use this new Siemens technology.

"With tomosynthesis we are witnessing a fascinating further development in digital mammography. This 3D technology offers impressive improvements in the detection of detail, which benefit both patients and radiologists alike: We can be more certain in our diagnosis, while women being examined can feel more reassured", explained Dr. Tewaag. "Tomosynthesis makes mammography less stressful for both the physician and patient. Based on current first impressions, additional examinations and interventions can be avoided with a clear conscience. Lesions hidden within the dense glandular tissue are identified at an earlier stage."

So far, conventional analog mammography and digital full-field mammography was only able to display the three-dimensional anatomical structure of the breast on a two-dimensional level. This made diagnosis more difficult and limited the possibility of the physician identifying certain types of tumor; since, anatomical structures could overlap and obscure lesions. The 3D tomosynthesis technology in the Mammomat Inspiration overcomes these limitations: The technology acquires several projections of the breast from different angles using a fast detector based on amorphous Selenium (aSe) and uses this raw data to generate a 3D volume set. This enables a better analysis of the type and size of lesions as well as microcalcifications compared to conventional methods.

Tomosynthesis increases the sensitivity and specificity of mammography, as well as improving tumor differentiation and classification.

Tomosynthesis differs from conventional mammography in the same way that, for example, a CT scan (computer tomography) differs from a classical X-ray image. During the examination, the Xray tube moves in a 50-degree arc around the breast, taking 25 low-dose images. The images are then used as raw data to construct high-resolution 3D images. High spatial resolution and a wide acquisition angle result in the production of mammography images with unparalleled image quality.

The digital Mammomat Inspiration system with basic screening and diagnostic functions has been on the market since the end of 2007 and is widely used in hospitals and medical practices around the world. Mammomat Inspiration offers screening, diagnostics, stereotactic biopsy, and now tomosynthesis for the first time together on a single integrated digital platform. Any hospital or practice can purchase a screening device and add the biopsy and 3D tomosynthesis applications at a later time if necessary. Soon, all installed systems of this type can be upgraded on-site with the tomosynthesis function.

The Siemens Healthcare Sector is one of the world's largest suppliers to the healthcare industry and a trendsetter in medical imaging, laboratory diagnostics, medical information technology and hearing aids. Siemens is the only company to offer customers products and solutions for the entire range of patient care from a single source – from prevention and early detection to diagnosis, and on to treatment and aftercare. By optimizing clinical workflows for the most common diseases, Siemens also makes healthcare faster, better and more cost-effective. Siemens Healthcare employs some 49,000 employees worldwide and operates in over 130 countries. In fiscal year 2008 (to September 30), the Sector posted revenue of 11.2 billion euros and profit of 1.2 billion euros.

Bianca Braun | Siemens Healthcare
Further information:
http://www.siemens.com/healthcare

More articles from Medical Engineering:

nachricht New imaging technique able to watch molecular dynamics of neurodegenerative diseases
14.07.2017 | The Optical Society

nachricht Quick test finds signs of sepsis in a single drop of blood
03.07.2017 | University of Illinois at Urbana-Champaign

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>