Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New electron microscopy images reveal the assembly of HIV

EMBL researchers provide the as yet closest look at the structure of immature HIV

Scientists at the European Molecular Biology Laboratory (EMBL) and the University Clinic Heidelberg, Germany, have produced a three-dimensional reconstruction of HIV (Human Immunodeficiency Virus), which shows the structure of the immature form of the virus at unprecedented detail.

Immature HIV is a precursor of the infectious virus, which can cause AIDS. The study, published in the 22-26 June online edition of PNAS, describes how the protein coat that packages the virus' genetic material assembles in human cells. Drugs that block this assembly process and prevent the virus from maturing into its infectious form are considered a promising therapeutic approach.

HIV consists of an RNA molecule that carries the genetic information of the virus and is surrounded by protective protein and membrane layers. During infection the virus deposits its genetic material into a human cell where it reprogrammes the host cell machinery to generate many copies of the viral genome and initiates the production of a viral protein called Gag. In the immature virus, many copies of Gag interact to form a roughly spherical lattice that encloses the virus' genetic material. The virus then leaves the cell with the help of proteins of the host and infects new cells.

Using a method called cryoelectron tomography researchers in the groups of John Briggs at EMBL and Hans-Georg Kräusslich at the University Clinic Heidelberg generated the as yet highest resolution 3D computer reconstruction images of the immature Gag lattice. The results suggest a simple model of HIV formation in human cells: multiple Gag proteins interact to form a hexameric lattice that grows with an inherent curvature and that incorporates new proteins stochastically. Several further steps in which Gag is cleaved by an enzyme are necessary to transform this immature lattice into its mature, infectious form.

Briggs and his team are now working on producing an even higher resolution structure of the protein lattice to gain a more detailed understanding of the virus' assembly and maturation processes, which may eventually help to find weak points that could be targeted by drugs.

Cryoelectron tomography is a technique with which a sample is instantly frozen in its natural state and then examined with an electron microscope. Images are taken from different directions and assembled into an accurate 3D reconstruction by a computer.

Anna-Lynn Wegener | EMBL
Further information:

More articles from Medical Engineering:

nachricht Gentle sensors for diagnosing brain disorders
29.09.2016 | King Abdullah University of Science and Technology

nachricht New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development
28.09.2016 | Lund University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>