Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New EEG trace interpretation method predicts neurological recovery of cardiac arrest patients

11.05.2009
Miikka Ermes (M.Sc., Eng.), Research Scientist from VTT Technical Research Centre of Finland will publicly defend his doctoral thesis presenting methods for analysing human biosignals on 15 May 2009, including innovative methods for the verification of brain damage following cardiac arrest.
Up until now, the use of electroencephalography (EEG) in the monitoring of cardiac patients has been limited due to interpretation difficulties.

A study conducted by a multi-disciplinary research team showed that variables derived from EEG traces can be used to predict neurological recovery even within the first 24 hours following cardiac arrest.

The researchers derived variables from the EEG trace which simplified the interpretation process. The long-term goal of the team is to develop methods that allow continuous monitoring of neurological recovery at hospitals. This would allow the health care personnel to promptly respond to changes in the patient’s brain status.

If blood circulation stops, the tissue in the patient’s body soon begins to suffer from reduced oxygen delivery. Brain cells are particularly sensitive to oxygen deprivation, which explains why even successfully resuscitated patients often sustain neurological damage. In its mildest form this is manifested as transient memory or movement disturbances; in the most serious cases, they can cause permanent unconsciousness.

Basically, an electroencephalogram (EEG) records the electrical activity of the brain in the same way as an electrocardiogram (ECG) records heart activity. Interpreting EEG traces is more difficult, however, since unlike the electrical activity of a regularly beating heart, the electrical activity of the brain consists of irregular impulses generated by billions of brain cells. While the applicability of EEG in predicting neurological recovery has long been known, difficulties in interpreting the recordings have limited the routine use of EEG in patient monitoring. Interpretation almost invariably requires consulting a specialist, which may cause a delay in treatment.

Miikka Ermes will publicly defend his doctoral thesis “Methods for the Classification of Biosignals Applied to the Detection of Epileptiform Waveforms and to the Recognition of Physical Activity” on Friday, 15 May 2009 starting at 12 noon. The public defence will take place in the Tietotalo Auditorium (room TB219) of the Tampere University of Technology (TUT), address: Korkeakoulunkatu 1, Tampere. Professor Georg Dorffner from the Medical University of Vienna (Austria) will act as the opponent.

The doctoral thesis, which belongs to the field of signal processing, is available on the Internet at
http://www.vtt.fi/inf/pdf/publications/2009/P707.pdf

For further information, please contact:

VTT Technical Research Centre of Finland
Miikka Ermes
Research Scientist
Tel. +358 40 530 9273
miikka.ermes@vtt.fi
Further information on VTT:
Senior Vice President
Olli Ernvall
Tel. +358 20 722 6747
olli.ernvall@vtt.fi
VTT Technical Research Centre of Finland is the biggest contract research organization in Northern Europe. VTT provides high-end technology solutions and innovation services. From its wide knowledge base, VTT can combine different technologies, create new innovations and a substantial range of world-class technologies and applied research services, thus improving its clients' competitiveness and competence. Through its international scientific and technology network, VTT can produce information, upgrade technology knowledge and create business intelligence and value added to its stakeholders.

Miikka Ermes | VTT info
Further information:
http://www.vtt.fi/?lang=en

More articles from Medical Engineering:

nachricht True to type: From human biopsy to complex gut physiology on a chip
14.02.2018 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht The Scanpy software processes huge amounts of single-cell data
12.02.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

New printing technique uses cells and molecules to recreate biological structures

20.02.2018 | Life Sciences

New tech for commercial Lithium-ion batteries finds they can be charged 5 times fast

20.02.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>