Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New EEG trace interpretation method predicts neurological recovery of cardiac arrest patients

11.05.2009
Miikka Ermes (M.Sc., Eng.), Research Scientist from VTT Technical Research Centre of Finland will publicly defend his doctoral thesis presenting methods for analysing human biosignals on 15 May 2009, including innovative methods for the verification of brain damage following cardiac arrest.
Up until now, the use of electroencephalography (EEG) in the monitoring of cardiac patients has been limited due to interpretation difficulties.

A study conducted by a multi-disciplinary research team showed that variables derived from EEG traces can be used to predict neurological recovery even within the first 24 hours following cardiac arrest.

The researchers derived variables from the EEG trace which simplified the interpretation process. The long-term goal of the team is to develop methods that allow continuous monitoring of neurological recovery at hospitals. This would allow the health care personnel to promptly respond to changes in the patient’s brain status.

If blood circulation stops, the tissue in the patient’s body soon begins to suffer from reduced oxygen delivery. Brain cells are particularly sensitive to oxygen deprivation, which explains why even successfully resuscitated patients often sustain neurological damage. In its mildest form this is manifested as transient memory or movement disturbances; in the most serious cases, they can cause permanent unconsciousness.

Basically, an electroencephalogram (EEG) records the electrical activity of the brain in the same way as an electrocardiogram (ECG) records heart activity. Interpreting EEG traces is more difficult, however, since unlike the electrical activity of a regularly beating heart, the electrical activity of the brain consists of irregular impulses generated by billions of brain cells. While the applicability of EEG in predicting neurological recovery has long been known, difficulties in interpreting the recordings have limited the routine use of EEG in patient monitoring. Interpretation almost invariably requires consulting a specialist, which may cause a delay in treatment.

Miikka Ermes will publicly defend his doctoral thesis “Methods for the Classification of Biosignals Applied to the Detection of Epileptiform Waveforms and to the Recognition of Physical Activity” on Friday, 15 May 2009 starting at 12 noon. The public defence will take place in the Tietotalo Auditorium (room TB219) of the Tampere University of Technology (TUT), address: Korkeakoulunkatu 1, Tampere. Professor Georg Dorffner from the Medical University of Vienna (Austria) will act as the opponent.

The doctoral thesis, which belongs to the field of signal processing, is available on the Internet at
http://www.vtt.fi/inf/pdf/publications/2009/P707.pdf

For further information, please contact:

VTT Technical Research Centre of Finland
Miikka Ermes
Research Scientist
Tel. +358 40 530 9273
miikka.ermes@vtt.fi
Further information on VTT:
Senior Vice President
Olli Ernvall
Tel. +358 20 722 6747
olli.ernvall@vtt.fi
VTT Technical Research Centre of Finland is the biggest contract research organization in Northern Europe. VTT provides high-end technology solutions and innovation services. From its wide knowledge base, VTT can combine different technologies, create new innovations and a substantial range of world-class technologies and applied research services, thus improving its clients' competitiveness and competence. Through its international scientific and technology network, VTT can produce information, upgrade technology knowledge and create business intelligence and value added to its stakeholders.

Miikka Ermes | VTT info
Further information:
http://www.vtt.fi/?lang=en

More articles from Medical Engineering:

nachricht Skin patch dissolves 'love handles' in mice
18.09.2017 | Columbia University Medical Center

nachricht Medicine of the future: New microchip technology could be used to track 'smart pills'
13.09.2017 | California Institute of Technology

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>