Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


In some dystonia cases, deep brain therapy benefits may linger after device turned off

Two patients freed from severe to disabling effects of dystonia through deep brain stimulation therapy continued to have symptom relief for months after their devices accidentally were fully or partly turned off, according to a report published online Feb. 11 in the journal Movement Disorders.

"Current thought is that symptoms will worsen within hours or days of device shut-off, but these two young men continued to have clinical benefit despite interruption of DBS therapy for several months. To our knowledge, these two cases represent the longest duration of retained benefit in primary generalized dystonia. Moreover, when these patients' symptoms did return, severity was far milder than it was before DBS," said senior author Michele Tagliati, MD, director of the Movement Disorders Program at Cedars-Sinai's Department of Neurology.

Dystonia causes muscles to contract, with the affected body part twisting involuntarily and symptoms ranging from mild to crippling. If drugs – which often have undesirable side effects, especially at higher doses – fail to give relief, neurosurgeons and neurologists may work together to supplement medications with deep brain stimulation, aimed at modulating abnormal nerve signals. Electrical leads are implanted in the brain – one on each side – and an electrical pulse generator is placed near the collarbone. The device is then programmed with a remote, hand-held controller. Tagliati is an expert in device programming, which fine-tunes stimulation for individual patients.

Few studies have looked at the consequences of interrupted DBS therapy, although one found "fairly rapid worsening of dystonia in 14 patients after interruption of stimulation for 48 hours, with symptom severity at times becoming worse than the pre-operative baseline." In another study of 10 patients with generalized dystonia, however, symptoms did not return in four patients when stimulation was discontinued for 48 hours.

Findings from the 10-patient study correlate well with these two cases, Tagliati said.

"It appears that several factors – age, duration of disease, length of time the patient has received DBS treatment and stimulation parameters – determine which patients may retain symptom relief after prolonged DBS interruption. Our two patients were young, 20 years old. They both began DBS therapy a relatively short time after disease onset; one at four years and the other at seven years. One had received continuous stimulation for five years and the other for 18 months before stimulation was interrupted," Tagliati said.

"We can't say for certain why these factors make the difference," he added, "But we theorize that a younger brain with shorter exposure to the negative effects of dystonia may be more responsive to therapy and have greater 'plasticity' to adapt back to normal. Both of our patients received DBS therapy at a lower energy than most patients experience, suggesting the possibility that low-frequency stimulation over an extended time may help retrain the brain's low-frequency electrical activity."

Both instances of device shut-off were accidental and were discovered during doctor visits after mild symptoms returned. The patient who had undergone five years of DBS therapy had only one stimulator turned off for about three months; the one stimulating the left side of his brain remained active. In the other patient, the left device had been off for about seven months and the right one for two months, Tagliati said.

Tagliati was senior author of a 2011 Journal of Neurology article on a study showing that for patients suffering from dystonia, deep brain therapy tends to get better, quicker results when started earlier rather than later.

"We knew from earlier work that younger patients with shorter disease duration had better clinical outcomes in the short term. In our 2011 article, we reported that they fare best in the long term, as well. That study uniquely showed that age and disease duration play complementary roles in predicting long-term clinical outcomes. The good news for older patients is that while they may not see the rapid gains of younger patients, their symptoms may gradually improve over several years," Tagliati said.

Tagliati has received speaker honoraria from Medtronic, Inc., and consultation fees from St. Jude Medical, Inc., Abbott Laboratories and Impax Laboratories, Inc., unrelated to this study.

Citation: Movement Disorders: "Sustained Relief of Generalized Dystonia Despite Prolonged Interruption of Deep Brain Stimulation." Published online ahead of print Feb. 11, 2013.

Sandy Van | Cedars-Sinai News
Further information:

More articles from Medical Engineering:

nachricht Gentle sensors for diagnosing brain disorders
29.09.2016 | King Abdullah University of Science and Technology

nachricht New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development
28.09.2016 | Lund University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>